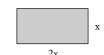
Funciones. Rectas y parábolas

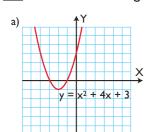


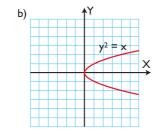
1. Funciones

PIENSA Y CALCULA

Dado el rectángulo de la figura, calcula:

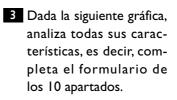
- a) el perímetro.
- b) el área.

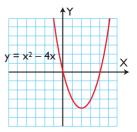

Solución:


Perímetro = 2(2x + x) = 6x

Área = $2x \cdot x = 2x^2$

<u>aplica la</u>teoría


1 Indica cuál de las siguientes gráficas es función:



- b) Logarítmica.
- c) Irracional.
- d) Trigonométrica.
- e) Racional.
- f) Exponencial.

- Solución:
- a) Sí es función.
- b) No es función. Hay valores de x para los que existen dos valores de y. Por ejemplo, para x = 4, y = -2, y = 2

2 Clasifica las siguientes funciones:

a)
$$y = x^2 - 2x + 1$$
 b) $y = \log(x + 1)$

b)
$$y = log(x + 1)$$

c)
$$y = \sqrt{x + 2}$$

d)
$$y = \cos 2x$$

e)
$$y = \frac{2}{x - 3}$$

f)
$$y = 2^{x + 1}$$

Solución:

a) Polinómica

- I. Tipo de función: polinómica.
- 2. Dominio: Dom(f) = \mathbb{R} = $(-\infty, +\infty)$
- 3. Continuidad: es continua.
- 4. Periodicidad: no es periódica.
- 5. Simetrías: no es simétrica respecto del eje Y ni respecto del origen O(0,0)

- Verticales: no tiene.
- Horizontales: no tiene.

7. Corte con los ejes:

- Eje X: O(0, 0), A(4, 0)
- Eje Y: O(0, 0)

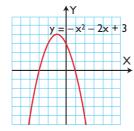
8. Máximos y mínimos relativos:

• Máximo relativo: no tiene.

• Mínimo relativo: B(2, -4)

Monotonía:

- Creciente (↗): (2, +∞)
- Decreciente (\searrow) : $(-\infty, 2)$


9. Puntos de inflexión: no tiene.

Curvatura:

- Convexa (\cup): $\mathbb{R} = (-\infty, +\infty)$
- Cóncava (∩): Ø
- 10. Recorrido o imagen:

 $Im(f) = [-4, +\infty)$

4 Dada la siguiente gráfica, analiza todas sus características, es decir, completa el formulario de los 10 apartados.

Solución:

- I. Tipo de función: polinómica.
- 2. Dominio: Dom(f) = \mathbb{R} = $(-\infty, +\infty)$
- 3. Continuidad: es continua.
- 4. Periodicidad: no es periódica.
- 5. Simetrías: no es simétrica respecto del eje Y ni respecto del origen O(0,0)
- 6. Asíntotas:
 - Verticales: no tiene.
 - Horizontales: no tiene.
- 7. Corte con los ejes:
 - Eje X: A(-3,0), B(1,0)
 - Eje Y: C(0, 3)
- 8. Máximos y mínimos relativos:
 - Máximo relativo: D(- I, 4)
 - Mínimo relativo: no tiene.

Monotonía:

- Creciente (\nearrow) : $(-\infty, -1)$
- Decreciente (\(\subseteq \): (- I, +∞)
- 9. Puntos de inflexión: no tiene.

Curvatura:

- Convexa (\cup): \emptyset
- Cóncava (\cap): $\mathbb{R} = (-\infty, +\infty)$
- 10. Recorrido o imagen:

$$Im(f) = (-\infty, 4]$$

2. Función lineal y función afín

<u>PIENSA Y CALCULA</u>

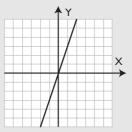
Dada la función f(x) = 2x, indica si es lineal o afín y calcula la pendiente.

Solución:

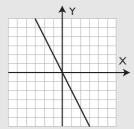
Función lineal.

Pendiente: m = 2

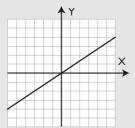
5 Dadas las funciones lineales siguientes, halla su pendiente e indica si son crecientes o decrecientes. Represéntalas:

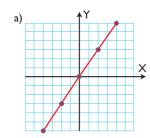

a)
$$y = 3x$$

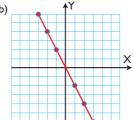
b)
$$y = -2x$$


c)
$$y = 2x/3$$

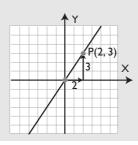
Solución:


a) m = $3 \Rightarrow$ Creciente.


b) $m = -2 \Rightarrow Decreciente$.


c) m = $2/3 \Rightarrow$ Creciente.

6 Halla las ecuaciones de las siguientes rectas:




Solución:

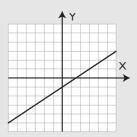
a)

 $m = \frac{3}{2} \Rightarrow y = \frac{3}{2}x$

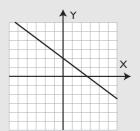
b)

$$m = -2 \Rightarrow y = -2x$$

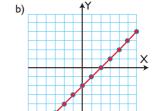
7 Dadas las funciones afines siguientes, halla su pendiente y la ordenada en el origen, e indica si son crecientes o decrecientes. Represéntalas:


a)
$$y = 2x/3 - 1$$

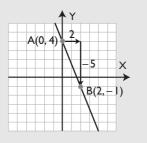
b)
$$y = -3x/4 + 2$$


Solución:

a) m = $2/3 \Rightarrow$ Creciente.

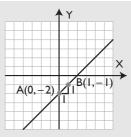

$$b = -1$$

b) m = $-3/4 \Rightarrow$ Decreciente.


8 Halla las ecuaciones de las siguientes rectas:

© Grupo Editorial Bruño, S.L.

Solución:


a)

$$m = \frac{-1-4}{2-0} = -\frac{5}{2}$$

$$y = -\frac{5}{2}x + 4$$

b)

$$m = \frac{-1 - (-2)}{1 - 0} = 1$$

$$b = -2$$

$$y = x - 2$$

3. Función cuadrática

<u>PIENSA Y C</u>ALCULA

Dada la función $f(x) = x^2 - 4$, representada en el margen, indica:

- a) la ecuación del eje de simetría.
- b) las coordenadas del vértice, y si éste es un máximo o un mínimo.

Solución:

- a) x = 0
- b) V(0, -4) es un mínimo.

<u>APLICA LA TEORÍA</u>

9 Halla el eje de simetría y las coordenadas del vértice, e indica si éste es un máximo o un mínimo en las siguientes funciones cuadráticas:

a)
$$y = 3x^2 - 6x - 1$$

a)
$$y = 3x^2 - 6x - 1$$

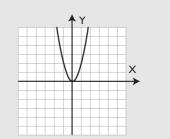
b) $y = -2x^2 + 8x - 5$
c) $y = x^2 - 9$
d) $y = x^2 + 2x$

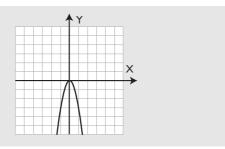
c)
$$y = x^2 - 9$$

d)
$$y = x^2 + 2x$$

Solución:

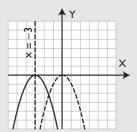
- a) Eje de simetría: x = I
 - V(1,-4) es un mínimo.
- b) Eje de simetría: x = 2
 - V(2, 3) es un máximo.
- c) Eje de simetría: x = 0
 - V(0, -9) es un mínimo.


- d) Eje de simetría: x = -1V(-1,-1) es un mínimo.
- 10 Representa las siguientes parábolas:

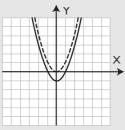

a)
$$y = 2x^2$$

b)
$$y = -3x^2$$

Solución:

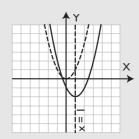

a)

11 Representa la parábola $y = x^2$; a partir de ella, representa la parábola $y = x^2 - 1$. Halla el eje de simetría y las coordenadas del vértice, e indica si éste es un máximo o un mínimo.


Solución:

Eje de simetría: x = -3V(-3,0) es un máximo.

13 Representa la parábola $y = x^2$; a partir de ella, representa la parábola $y = (x - 1)^2 - 2$. Halla el eje de simetría y las coordenadas del vértice, e indica si éste es un máximo o un mínimo.


Solución:

Eje de simetría: x = 0V(0, -1) es un mínimo.

12 Representa la parábola $y = -x^2$; a partir de ella, representa la parábola $y = -(x + 3)^2$. Halla el eje de simetría y las coordenadas del vértice, e indica si éste es un máximo o un mínimo.

Solución:

Eje de simetría: x = IV(1,-2) es un mínimo.

4. La parábola

PIENSA Y CALCULA

Dada la función $f(x) = x^2 - 2x - 1$, representada en el margen, indica:

- a) la ecuación del eje de simetría.
- b) las coordenadas del vértice y si éste es máximo o mínimo.

Solución:

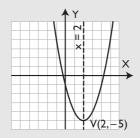
Eje de simetría: x = 1

V(1, -2) es un mínimo.

Halla el eje de simetría y las coordenadas del vértice, indicando si éste es un máximo o un mínimo, de las siguientes funciones cuadráticas, y representalas:

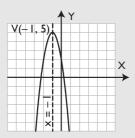
a)
$$y = x^2 - 4x - 1$$

b)
$$y = -3x^2 - 6x + 2$$

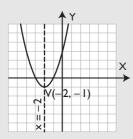

c)
$$y = x^2 + 4x + 3$$

d)
$$y = -2x^2 + 8x - 5$$

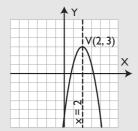
Solución:


a) Eje de simetría: x = 2

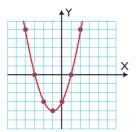
V(2,-5) es un mínimo.


b) Eje de simetría: x = -1

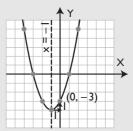
V(-I,5) es un máximo.


c) Eje de simetría: x = -2

V(-2, -1) es un mínimo.

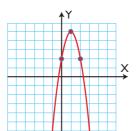


d) Eje de simetría: x = 2

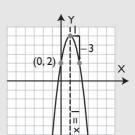

V(2, 3) Es un máximo.

15 Halla la ecuación de la siguiente parábola:

Solución:


Eje de simetría:

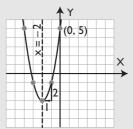
$$x = -\frac{b}{2a} \Rightarrow b = -2ax \Rightarrow b = 2$$


$$c = -3$$

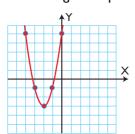
$$y = x^2 + 2x - 3$$

16 Halla la ecuación de la siguiente parábola:

Solución:


$$a = -3$$

Eje de simetría:


$$x = -\frac{b}{2a} \Rightarrow b = -2ax \Rightarrow b = 6$$

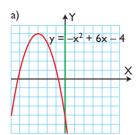
$$c = 2$$

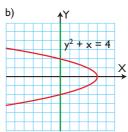
y = $-3x^2 + 6x + 2$

Solución:

17 Halla la ecuación de la siguiente parábola:

a = 2


Eje de simetría:


$$x = -\frac{b}{2a} \Rightarrow b = -2ax \Rightarrow b = 8$$

$$y = 2x^2 + 8x + 5$$

1. Funciones

18 Indica cuál de las siguientes gráficas es función:

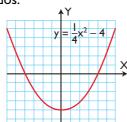
Solución:

- a) Sí es función.
- b) No es función. Hay valores de x para los que existen dos valores de y. Por ejemplo, para x = 0, y = -2, y = 2
- 19 Clasifica las siguientes funciones:

a)
$$y = 3x^2 - x + 2$$

b)
$$y = \log(x - 3)$$

c)
$$y = \sqrt{x - 5}$$


d)
$$y = sen(x + \pi)$$

e)
$$y = \frac{3x - 5}{x - 2}$$

f)
$$y = 3^{x-2}$$

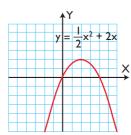
Solución:

- a) Polinómica.
- b) Logarítmica.
- c) Irracional.
- d) Trigonométrica.
- e) Racional.
- f) Exponencial.
- 20 Dada la siguiente gráfica, analiza todas sus características, es decir, completa el formulario de los diez apartados.

Solución:

- 1. Tipo de función: polinómica.
- 2. Dominio: Dom(f) = \mathbb{R} = $(-\infty, +\infty)$
- 3. Continuidad: es continua.
- 4. Periodicidad: no es periódica.
- 5. Simetrías: es simétrica respecto del eje Y
- 6. Asíntotas:
 - Verticales: no tiene.
 - Horizontales: no tiene.
- 7. Corte con los ejes:
 - Eje X: A(-4, 0), B(4, 0)
 - Eje Y: C(0, -4)
- 8. Máximos y mínimos relativos:
 - Máximo relativo: no tiene.
 - Mínimo relativo: C(0, -4)

Monotonía:


- Creciente (¬): (0, +∞)
- Decreciente (\searrow) : $(-\infty, 0)$
- 9. Puntos de inflexión: no tiene.

Curvatura:

- Convexa (\cup): $\mathbb{R} = (-\infty, +\infty)$
- Cóncava (∩): Ø
- 10. Recorrido o imagen:

$$Im(f) = [-4, +\infty)$$

21 Dada la siguiente gráfica, analiza todas sus características, es decir, completa el formulario de los diez apartados.

- 1. Tipo de función: polinómica.
- 2. Dominio: Dom(f) = \mathbb{R} = $(-\infty, +\infty)$
- 3. Continuidad: es continua.
- 4. Periodicidad: no es periódica.
- 5. Simetrías: no es simétrica respecto del eje Y ni respecto del origen O(0,0)

6. Asíntotas:

- Verticales: no tiene.
- Horizontales: no tiene.
- 7. Corte con los ejes:
 - Eje X: O(0, 0), A(4, 0)
 - Eje Y: O(0, 0)
- 8. Máximos y mínimos relativos:
 - Máximo relativo: B(2, 2)
 - Mínimo relativo: no tiene.

Monotonía:

- Creciente (↗): (-∞, 2)
- Decreciente (\(\scalength): (2, +∞)
- 9. Puntos de inflexión: no tiene.

Curvatura:

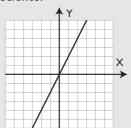
- Convexa (\cup): \emptyset
- Cóncava (\cap): $\mathbb{R} = (-\infty, +\infty)$
- 10. Recorrido o imagen:

$$Im(f) = (-\infty, 2]$$

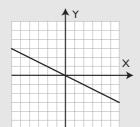
2. Función lineal y función afín

22 Halla mentalmente la pendiente de las siguientes funciones lineales o de proporcionalidad directa, di si son crecientes o decrecientes y represéntalas:

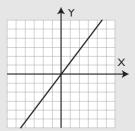
a)
$$y = 2x$$

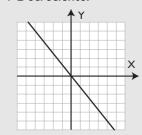

b) y =
$$-\frac{x}{2}$$

c)
$$y = \frac{4x}{3}$$

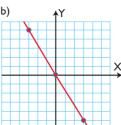

c)
$$y = \frac{4x}{3}$$
 d) $y = -\frac{5x}{4}$

Solución:

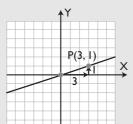

a) m = $2 \Rightarrow$ Creciente.

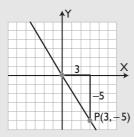

b) m = $-1/2 \Rightarrow$ Decreciente.

c) m = $4/3 \Rightarrow$ Creciente.



d) m = $-5/4 \Rightarrow$ Decreciente.


Halla las ecuaciones de las siguientes rectas:



Solución:

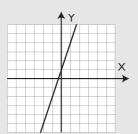
a)

$$m = \frac{1}{3} \Rightarrow y = \frac{1}{3}x$$

$$m = \frac{-5}{3} \Rightarrow y = -\frac{5}{3}x$$

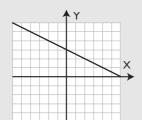
24 Halla mentalmente la pendiente y la ordenada en el origen de las siguientes funciones afines, di si son crecientes o decrecientes y represéntalas:

a)
$$y = 3x + 1$$

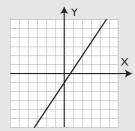

a)
$$y = 3x + 1$$
 b) $y = -\frac{x}{2} + 3$

c)
$$y = \frac{3x}{2} - 1$$

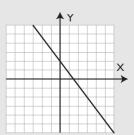
c)
$$y = \frac{3x}{2} - 1$$
 d) $y = -\frac{4x}{3} + 2$


Solución:

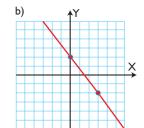
a) m = $3 \Rightarrow$ Creciente.


b) m = $-1/2 \Rightarrow$ Decreciente.

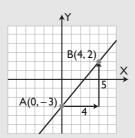
$$b = 3$$



c) m = $3/2 \Rightarrow$ Creciente.

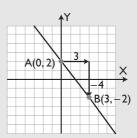

$$b = -I$$

d) m = $-4/3 \Rightarrow$ Decreciente.



25 Halla las ecuaciones de las siguientes rectas:

Solución:


a)

$$m = \frac{2 - (-3)}{4 - 0} = \frac{5}{4}$$

$$y = \frac{5}{4}x - 3$$

b)

$$m = \frac{-2-2}{3-0} = -\frac{4}{3}$$

$$b = 2$$

$$y = -\frac{4}{3}x + 2$$

3. Función cuadrática

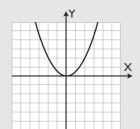
26 Halla el eje de simetría y las coordenadas del vértice, e indica si éste es un máximo o un mínimo en las siguientes funciones cuadráticas:

a)
$$y = 4x^2 - 16x + 11$$

b)
$$y = -x^2 + 2x - 3$$

c)
$$y = x^2 + 2$$

d)
$$y = x^2 + 4x$$


Solución:

- a) Eje de simetría: x = 2
 - V(2,-5) es un mínimo.
- b) Eje de simetría: x = I
 - V(1,-2) es un máximo.
- c) Eje de simetría: x = 0
 - V(0, 2) es un mínimo.
- d) Eje de simetría: x = -2
 - V(-2,-4) es un mínimo.
- 27 Representa la siguiente parábola:

$$y = \frac{x^2}{2}$$

- a) Halla el eje de simetría.
- b) Halla las coordenadas del vértice, e indica si éste es un máximo o un mínimo.
- c) ¿Dónde es creciente y dónde decreciente?
- d) ¿Es convexa (\cup) o cóncava (\cap)?

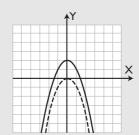
Solución:

- a) x = 0
- b) V(0, 0) es un mínimo.
- c) Creciente (\nearrow) : $(0, +\infty)$
 - Decreciente (\searrow): ($-\infty$, 0)
- d) Es convexa (∪)
- 28 Representa la siguiente parábola:

$$y = -\frac{x^2}{3}$$

- a) Halla el eje de simetría.
- b) Halla las coordenadas del vértice, e indica si éste es un máximo o un mínimo.
- c) ¿Dónde es creciente y dónde decreciente?
- d) ¿Es convexa (\cup) o cóncava (\cap)?

Solución:

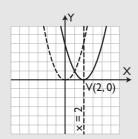

- a) x = 0
- b) V(0,0) es un máximo.
- c) Creciente (\nearrow) : $(-\infty, 0)$ Decreciente (\searrow) : $(0, +\infty)$
- d) Es cóncava (∩)
- 29 Representa la parábola $y = -x^2$

A partir de ella, representa la siguiente parábola:

$$y = -x^2 + 2$$

- a) Halla el eje de simetría.
- b) Halla las coordenadas del vértice, e indica si éste es un máximo o un mínimo.
- c) ¿Dónde es creciente y dónde decreciente?
- d) ¿Es convexa (\cup) o cóncava (\cap)?

Solución:

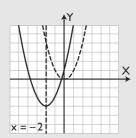


- a) x = 0
- b) V(0, 2) es un máximo.
- c) Creciente (\nearrow) : $(-\infty, 0)$
 - Decreciente (\searrow): (0, + ∞)
- d) Es cóncava (∩)
- Representa la función $y = x^2$

A partir de ella, representa la siguiente parábola:

- a) Halla el eje de simetría.
- b) Halla las coordenadas del vértice, e indica si éste es un máximo o un mínimo.
- c) ¿Dónde es creciente y dónde decreciente?
- d) ¿Es convexa (\cup) o cóncava (\cap)?

Solución:


- a) x = 2
- b) V(2, 0) es un mínimo.
- c) Creciente (\nearrow) : $(2, +\infty)$ Decreciente (\searrow) : $(-\infty, 2)$
- d) Es convexa (∪)
- 31 Representa la función $y = x^2$

A partir de ella, representa la siguiente parábola:

$$y = (x + 2)^2 - 3$$

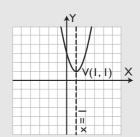
- a) Halla el eje de simetría.
- b) Halla las coordenadas del vértice, e indica si éste es un máximo o un mínimo.
- c) ¿Dónde es creciente y dónde decreciente?
- d) ¿Es convexa (\cup) o cóncava (\cap)?

Solución:

- a) x = -2
- b) V(-2, -3) es un mínimo.
- c) Creciente (\nearrow): (-2, $+\infty$)

Decreciente $(\searrow):(-\infty,-2)$

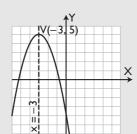
d) Es convexa (∪)


4. La parábola

32 Representa la siguiente parábola:

$$y = 2x^2 - 4x + 3$$

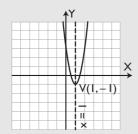
- a) Halla el eje de simetría.
- b) Halla las coordenadas del vértice, e indica si éste es un máximo o un mínimo.


Solución:

- a) x = 1
- b) V(I, I) es un mínimo.
- 33 Representa la siguiente parábola:

$$y = -x^2 - 6x - 4$$

- a) Halla el eje de simetría.
- b) Halla las coordenadas del vértice, e indica si éste es un máximo o un mínimo.



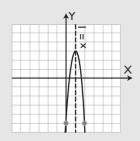
- a) x = -3
- b) V(-3, 5) es un máximo.
- 34 Representa la siguiente parábola:

$$y = 4x^2 - 8x + 3$$

- a) Halla el eje de simetría.
- b) Halla las coordenadas del vértice, e indica si éste es un máximo o un mínimo.

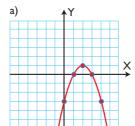
Solución:

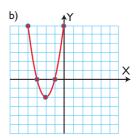
$$a) \times = I$$


b) V(I, -I) es un mínimo.

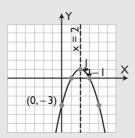
35 Representa la siguiente parábola:

$$y = -8x^2 + 16x - 5$$


- a) Halla el eje de simetría.
- b) Halla las coordenadas del vértice, e indica si éste es un máximo o un mínimo.


Solución:

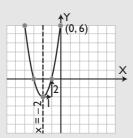
$$a) x = I$$


- b) V(1,3) es un máximo.
- 36 Halla la ecuación de las siguientes parábolas:

Solución:

a)

$$a = -1$$


Eje de simetría:

$$x = -\frac{b}{2a} \Rightarrow b = -2ax \Rightarrow b = 4$$

$$c = -3$$

$$y = -x^2 + 4x - 3$$

b)

$$a = 2$$

Eje de simetría:

$$x = -\frac{b}{2a} \Rightarrow b = -2ax \Rightarrow b = 8$$

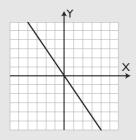
$$y = 2x^2 + 8x + 6$$

Para ampliar

37 Clasifica las siguientes funciones en lineales o afines. Halla mentalmente la pendiente, di si son crecientes o decrecientes y represéntalas:

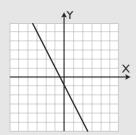
a) y =
$$-\frac{3x}{2}$$

b)
$$y = -2x - 1$$

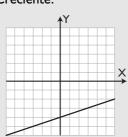

c)
$$y = \frac{x}{3} - 4$$
 d) $y = \frac{x}{4}$

d) y =
$$\frac{x}{4}$$

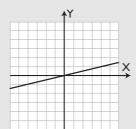
Solución:


a) Función lineal.

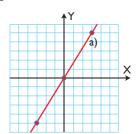
$$m = -3/2 \Rightarrow Decreciente.$$

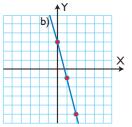

b) Función afín.

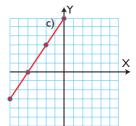
$$m = -2 \Rightarrow Decreciente.$$

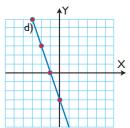

c) Función afín.

$$m = 1/3 \Rightarrow Creciente.$$




d) Función lineal.


$$m = 1/4 \Rightarrow Creciente.$$



38 Halla las ecuaciones de las siguientes rectas:

Solución:

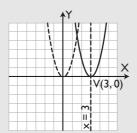
a)
$$y = \frac{5}{3}x$$

b)
$$y = -4x + 3$$

c)
$$y = \frac{3}{2}x + 6$$

d)
$$y = -3x - 3$$

39 Representa la siguiente parábola:


$$y = 2x^2$$

A partir de ella, representa la parábola:

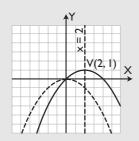
$$y = 2(x - 3)^2$$

- a) Halla el eje de simetría.
- b) Halla las coordenadas del vértice, e indica si éste es un máximo o un mínimo.
- c) ¿Dónde es creciente y dónde decreciente?
- d) ¿Es convexa (\cup) o cóncava (\cap)?

Solución:

a)
$$x = 3$$

b) V(3, 0) es un mínimo.

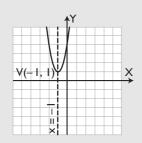

- c) Creciente (¬): (3, +∞)
 - Decreciente (\searrow): ($-\infty$, 3)
- d) Es convexa (∪)
- 40 Representa la siguiente parábola: $y = -\frac{x^2}{4}$

A partir de ella representa la parábola:

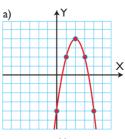
$$y = -\frac{1}{4}(x-2)^2 + 1$$

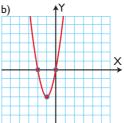
- a) Halla el eje de simetría.
- b) Halla las coordenadas del vértice, e indica si éste es un máximo o un mínimo.
- c) ¿Dónde es creciente y dónde decreciente?
- d) ¿Es convexa (\cup) o cóncava (\cap)?

Solución:

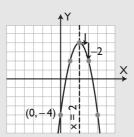


- a) x = 2
- b) V(2, 1) es un máximo.
- c) Creciente (\nearrow): ($-\infty$, 2)
 - Decreciente (\searrow) : $(2, +\infty)$
- d) Es cóncava (∩)
- 41 Representa la siguiente parábola:


$$y = 3x^2 + 6x + 4$$


- a) Halla el eje de simetría.
- b) Halla las coordenadas del vértice, e indica si éste es un máximo o un mínimo.
- c) ¿Dónde es creciente y dónde decreciente?
- d) ¿Es convexa (\cup) o cóncava (\cap)?

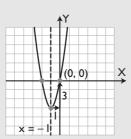
Solución:


- a) x = -1
- b) V(-I, I) es un mínimo.
- c) Creciente (\nearrow) : $(-1, +\infty)$ Decreciente (\searrow) : $(-\infty, -1)$
- d) Es convexa (∪)
- 42 Halla la ecuación de las siguientes parábolas:

Solución:

a)

$$a = -2$$


Eje de simetría:

$$x = -\frac{b}{2a} \Rightarrow b = -2ax \Rightarrow b = 8$$

$$c = -4$$

$$y = -2x^2 + 8x - 4$$

b)

$$a = 3$$

© Grupo Editorial Bruño, S.L.

$$x = -\frac{b}{2a} \Rightarrow b = -2ax \Rightarrow b = 6$$

$$y = 3x^2 + 6x$$

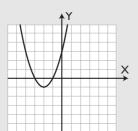
43 Halla algebraicamente los puntos de corte de las siguientes parábolas con los ejes de coordenadas, representa las parábolas y comprueba el resultado.

a)
$$y = x^2 + 4x + 3$$

b)
$$y = x^2 - 2x$$

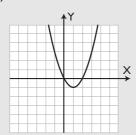
c)
$$y = x^2 + 4x + 4$$

d)
$$y = x^2 - 2x + 2$$


Solución:

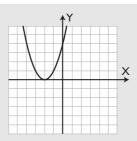
a) Eje X:

$$x^2 + 4x + 3 = 0 \Rightarrow x = -3, x = -1$$


$$A(-3,0), B(-1,0)$$

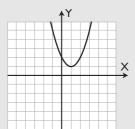
Eje Y: C(0, 3)

$$x^2 - 2x = 0 \Rightarrow x = 0, x = 2$$


Eje Y: O(0, 0)

$$x^2 + 4x + 4 = 0 \Rightarrow x = -2$$

$$A(-2,0)$$


Eje Y: B(0, 4)

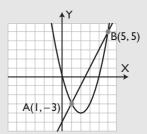
d) Eje X:

$$x^2 - 2x + 2 = 0 \Rightarrow$$
 No tiene solución.

Eje Y: A(0, 2)

44 Halla algebraicamente los puntos de corte de la recta y la parábola siguientes, representa las gráficas y comprueba el resultado:

$$y = 2x - 5$$


$$y = x^2 - 4x$$

Solución:

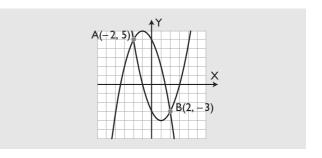
Se resuelve el sistema formado por la ecuación de la recta y de la parábola:

$$x = 1, y = -3 \Rightarrow A(1, -3)$$

$$x = 5, y = 5 \Rightarrow B(5, 5)$$

45 Halla algebraicamente los puntos de corte de las siguientes parábolas, representa las parábolas y comprueba el resultado:

$$y = x^2 - 2x - 3$$


$$y = -x^2 - 2x + 5$$

Solución:

Se resuelve el sistema formado por las ecuaciones de las dos parábolas:

$$x = -2, y = 5 \Rightarrow A(-2, 5)$$

$$x = 2, y = -3 \Rightarrow B(2, -3)$$

Problemas

46 La parábola $y = ax^2 + bx + c$ pasa por el origen de coordenadas.

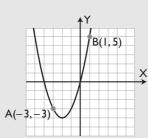
a) ¿Cuánto vale c?

b) Si la parábola pasa además por los puntos A(-3,-3) y B(1,5), calcula el valor de los coeficientes $\bf a$ y $\bf b$

c) Escribe la ecuación de la parábola.

d) Represéntala gráficamente.

Solución:


a) c = 0

b) Se resuelve el sistema:

$$9a - 3b = -3$$
 $a + b = 5$
 $a = 1, b = 4$

c)
$$y = x^2 + 4x$$

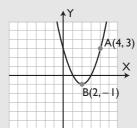
d)

47 Sea la parábola $y = x^2 + bx + c$

a) Calcula los valores de **b** y **c** sabiendo que pasa por los puntos A(4,3) y B(2,-1)

b) Escribe la ecuación de la parábola.

c) Represéntala gráficamente.


Solución:

a) Se resuelve el sistema:

$$16 + 4b + c = 3$$

 $4 + 2b + c = -1$
 $b = -4, c = 3$

b)
$$y = x^2 - 4x + 3$$

c)

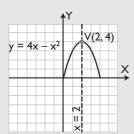
48 La distancia de seguridad que deben guardar los coches entre sí, en circulación, se recoge en la tabla siguiente:

Velocidad (km/h)	Distancia de seguridad (m)		
10	I		
20	4		
30	9		
40	16		
50	25		
•••	•••		

Expresa la distancia de seguridad en función de la velocidad, y representa la gráfica.

Solución:

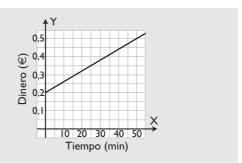
$$y = \left(\frac{x}{10}\right)^2$$


49 El perímetro de un rectángulo mide 8 m. Expresa el área del rectángulo, en función del lado x de la base. Representa la función e indica el valor del lado de la base para el que el área se hace máxima.

Solución:

Si el perímetro mide 8 m, la base más la altura mide 4 m $\,$

$$y = x(4 - x)$$
$$y = 4x - x^2$$

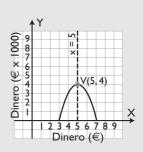


El máximo se obtiene para x = 2, que forma un cuadrado de área 4 m²

50 Un servicio de telefonía cobra 0,2 € por el uso del servicio y 0,06 € por cada minuto. Escribe la fórmula de la función que expresa el dinero que se paga en función del tiempo y representa su gráfica.

Solución:

$$y = 0.2 + 0.06x$$

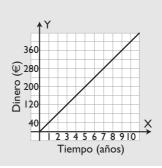

51 El beneficio, en miles de euros, que se obtiene al vender a x € una unidad de un determinado producto viene dado por la fórmula

$$B(x) = -x^2 + 10x - 21$$

- a) Representa la función B(x)
- b) Determina el precio al que hay que vender el producto para obtener el máximo beneficio.

Solución:

a)



- b) A 5 \in la unidad, se obtiene el máximo beneficio, que es de 4000 \in
- 52 Se depositan 2000 € a un 2% de interés simple anual. Expresa el interés en función del tiempo y representa la gráfica.

Solución:

$$y = 2000 \cdot 0.02 \cdot x$$

$$y = 40x$$

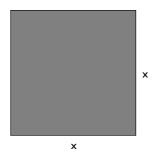
53 La energía cinética de un móvil de masa **m** viene dada por la siguiente fórmula:

$$E(v) = \frac{1}{2}mv^2$$

donde **v** es la velocidad del móvil en m/s; **m**, la masa en kilos, y **E**, la energía en julios. Dibuja la gráfica que expresa la energía cinética en función de la velocidad de un cuerpo de I kg de masa. ¿Qué tipo de gráfica es?

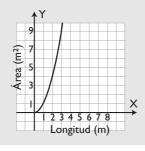
Solución:

$$E = \frac{1}{2}mv^2$$


$$E = \frac{1}{2}v^2$$

Velocidad (m/h)	0	I	2	3	4	
Energía (julios)	0	1/2	2	9/2	8	
9		/				
(soilui)						
	++/					
gía c						

Es una parábola.


Halla el área de un cuadrado en función del lado x. Represéntala gráficamente.

Velocidad (m/s)

Solución:

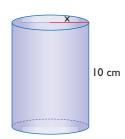
$$y = x^2$$

Para profundizar

Escribe la ecuación de la parábola que tiene el vértice en V(2, 2) y pasa por P(1, 3)

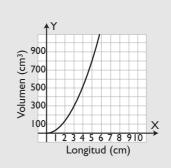
Solución:

Si el vértice es V(2,2) y pasa por $P(1,3) \Rightarrow a = 1$ Se resuelve el sistema:


$$4 + 2b + c = 2$$

$$1 + b + c = 3$$

$$b = -4, c = 6$$


$$y = x^2 - 4x + 6$$

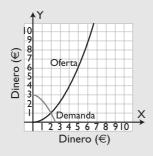
Escribe la función que da el volumen de un cilindro de 10 cm de altura en función del radio de la base. Represéntala.

Solución:

$$y = 10\pi x^2$$

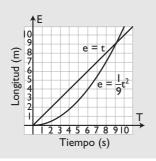
57 La demanda y la oferta de un determinado producto en función del precio x son:

Oferta:
$$y = \frac{1}{4}x^2$$


Demanda:
$$y = -\frac{1}{2}x^2 + 3$$

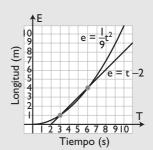
donde x se expresa en euros, e y es la cantidad ofertada o demandada.

- a) Halla el punto de equilibrio algebraicamente.
- b) Representa las funciones y comprueba el resultado.


a) Se resuelve el sistema de las dos ecuaciones: x = 2, y = 1

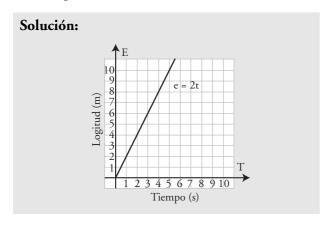
b)

Dos móviles inician su movimiento desde un punto O. El primero se desplaza según la fórmula $e = \frac{1}{9}t^2$, y el segundo móvil, según e = t; donde t se mide en segundos, y e, en metros. Representa las gráficas de sus movimientos e interpreta el resultado.

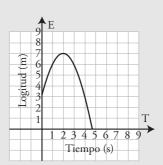

Solución:

Al principio, el 2° móvil recorre un mayor espacio en el mismo tiempo; éste se iguala a los 9 s, y a partir de los 9 s, el 1^{er} móvil recorre un espacio mayor.

Dos móviles inician su movimiento desde un punto O. El primero se desplaza según la fórmula $e = \frac{1}{9}t^2$, y el segundo móvil, según e = t; donde t se mide en segundos, y e, en metros. Representa las gráficas de sus movimientos e interpreta el resultado sabiendo que el segundo móvil parte 2 s más tarde que el primero.


Solución:

El 2° móvil alcanza al primero a los 2 s y está por delante hasta los 6 s, cuando se vuelven a encontrar a los 4 m del recorrido. A partir de ese instante, el I er móvil va por delante del 2°.


Aplica tus competencias

60 Un móvil se desplaza con una velocidad constante de 2 m/s. Halla la ecuación y representa la gráfica que expresa el espacio en función del tiempo.

61 Un móvil se desplaza según la fórmula $e = -t^2 + 4t + 3$. Representa la gráfica e indica el valor del espacio inicial, la velocidad inicial y la aceleración.

$$e_0 = 3 \text{ m}$$

$$v_0 = 4 \text{ m/s}$$

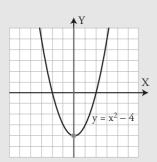
$$a = -2 \text{ m/s}^2$$

Comprueba lo que sabes

1 Define función cuadrática, pon un ejemplo e indica sus características.

Solución:

Una **función cuadrática** es una función polinómica de segundo grado $\mathbf{y} = \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}$, siendo **a**, **b** y **c** números reales y $\mathbf{a} \neq 0$. Su representación gráfica es una **parábola** que tiene las siguientes características:


a) Tiene un eje de simetría cuya fórmula es:

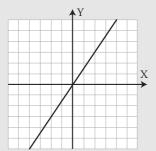
$$x = -\frac{b}{2a}$$

- b) Corta al eje X en dos puntos, uno o ninguno, según el número de raíces reales de $ax^2 + bx + c = 0$, y corta al eje Y en el punto (0, c)
- c) El vértice es un mínimo si a > 0, y un máximo si a < 0; por una parte del eje es creciente, y por la otra es decreciente.
- d) Es convexa (\cup) si $\mathbf{a} > \mathbf{0}$ y cóncava (\cap) si $\mathbf{a} < \mathbf{0}$
- e) Al aumentar **a** en valor absoluto, se hace más estrecha.

Ejemplo

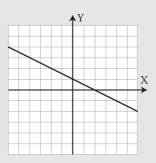
$$y = x^2 - 4$$

2 Clasifica las siguientes funciones en lineales o afines, halla mentalmente la pendiente, indica si son crecientes o decrecientes y represéntalas:

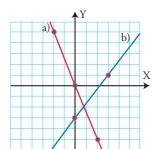

a)
$$y = 3x/2$$

b)
$$y = -x/2 + 1$$

Solución:

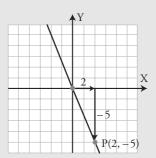

a) Función lineal.

$$m = 3/2 \Rightarrow Creciente.$$



b) Función afín.

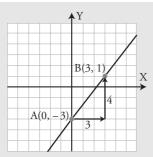
$$m = -1/2 \Rightarrow Decreciente.$$



3 Halla las ecuaciones de las siguientes rectas y clasifícalas.

Solución:

a)


$$m = -\frac{5}{2}$$

$$y = -\frac{5}{2}x$$

Función lineal.

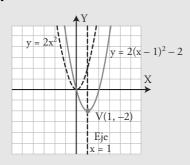
Comprueba lo que sabes

b)

$$m = \frac{1 - (-3)}{3 - 0} = \frac{4}{3}$$

$$b = -3$$

$$y = \frac{4}{3}x - 3$$

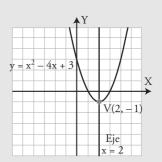

Función afín.

4 Representa la parábola y = 2x², y a partir de ella, dibuja la parábola:

$$y = 2(x - 1)^2 - 2$$

- a) Halla el eje de simetría.
- b) ¿Cuándo es creciente y cuándo es decreciente?
- c) Halla el vértice y di si éste es un máximo o un mínimo.
- d) ¿Es convexa (\cup) o cóncava (\cap)?

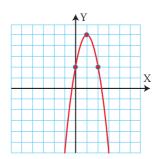
Solución:

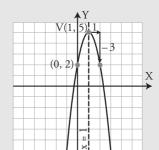


- a) x = 1
- b) Creciente (↗): (1, +∞)

Decreciente (\searrow): ($-\infty$, 1)

- c) V(1, -2) es un mínimo.
- d) Es convexa (∪)
- 5 Representa la parábola $y = x^2 4x + 3$, halla el eje de simetría e indica si el vértice es un máximo o un mínimo.


Solución:



Eje de simetría: x = 2

V(2, -1) es un mínimo.

6 Halla la fórmula de la parábola del margen.

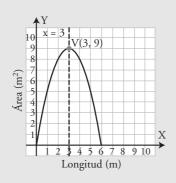
$$a = -3$$

Eje de simetría:
$$x = -\frac{b}{2a} \Rightarrow b = -2ax \Rightarrow b = 6$$

$$c = 2$$

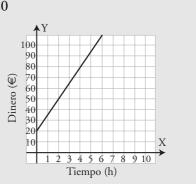
$$y = -3x^2 + 6x + 2$$

- 7 Un cristalero quiere hacer marcos rectangulares para espejos que tengan 12 m de perímetro.
 - a) Escribe la fórmula que expresa el área de los rectángulos en función del lado x
 - b) Representa la gráfica.
 - c) ¿Para qué valor de **x** se hace máxima el área del espejo?


Solución:

a) Si el perímetro mide 12 m, la base más la altura miden 6 m; por tanto, si la base es \mathbf{x} , la altura será 6 - x

$$y = x(6 - x)$$
$$y = 6x - x^2$$


b)

c) El máximo se alcanza cuando el rectángulo es un cuadrado de 3 m de lado y tiene un área de 9 m²

8 Un técnico cobra 20 € por desplazamiento y 15 € por cada hora de trabajo. Halla la ecuación que calcula el dinero que cobra en función del tiempo que tarda en hacer un trabajo, y represéntala.

$$y = 15x + 20$$

Linux/Windows GeoGebra

Paso a paso

62 Dada la función: $y = \frac{3}{2}x - 4$

clasifícala, halla su pendiente y estudia el crecimiento; calcula la ordenada en el origen. Represéntala.

Solución:

Resuelto en el libro del alumnado.

63 Representa la siguiente parábola:

$$y = x^2 - 2x - 4$$

Halla el eje de simetría y dibújalo, calcula las coordenadas del vértice y di si es máximo o mínimo, halla dónde es creciente y decreciente y di si es cóncava o convexa.

Solución:

Resuelto en el libro del alumnado.

Plantea el siguiente problema y resuélvelo con ayuda de Geogebra y DERIVE:

64 El perímetro de un rectángulo mide 8 m. Expresa el área del rectángulo en función del lado **x** de la base. Representa la función e indica el valor del lado de la base para el que se hace máxima el área.

Solución:

Resuelto en el libro del alumnado.

65 Internet. Abre: www.editorial-bruno.es y elige Matemáticas, curso y tema.

Practica

66 Dadas las funciones siguientes:

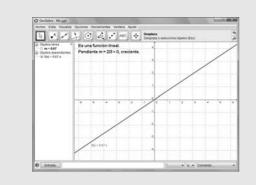
a)
$$y = 3x$$

b)
$$y = -2x$$

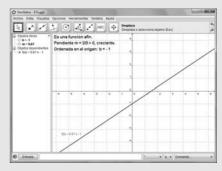
c)
$$y = 2x/3$$

clasifícalas, halla su pendiente y estudia el crecimiento. Represéntalas.

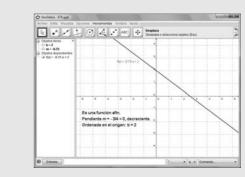
Solución:


a)

b)

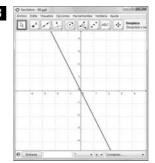


c)



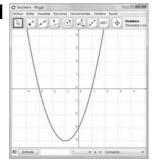
Solución:

a)



b)

Identifica las siguientes gráficas y halla mediante *ensayo-acierto* su fórmula:


68

Solución:

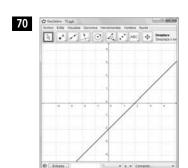
- a) Función lineal.
- b) y = -2x

69

67 Dadas las funciones siguientes:

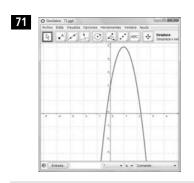
a)
$$y = 2x/3 - 1$$

b)
$$y = -3x/4 + 2$$


clasifícalas, halla su pendiente y estudia el crecimiento; calcula la ordenada en el origen. Represéntalas.

Linux/Windows GeoGebra

Solución:


a) Función cuadrática.

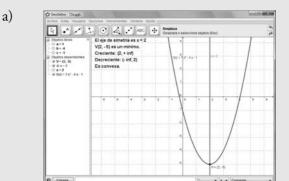
b)
$$y = x^2 - 2x - 3$$

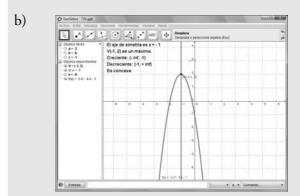
Solución:

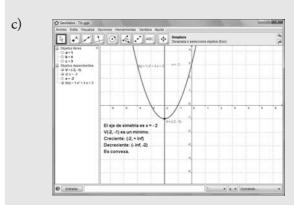
- a) Función afín.
- b) y = x 2

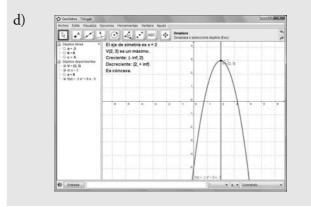
Solución:

- a) Función cuadrática.
- b) $y = -3x^2 + 6x + 2$
- 72 Halla el eje de simetría, las coordenadas del vértice indicando si es un máximo o un mínimo y representa las siguientes funciones cuadráticas:

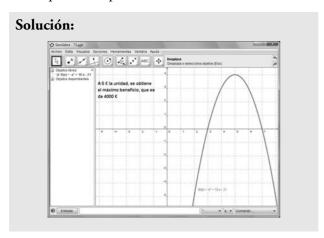

a)
$$y = x^2 - 4x - 1$$


b)
$$y = -3x^2 - 6x + 2$$


c)
$$y = x^2 + 4x + 3$$

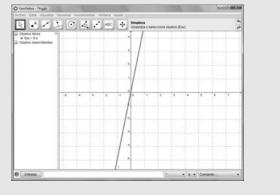

d)
$$y = -2x^2 + 8x - 5$$

Solución:

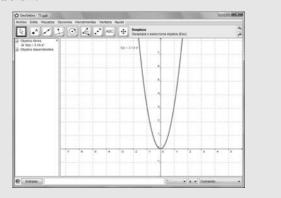


Plantea los siguientes problemas y resuélvelos con ayuda de Geogebra o Derive:

73 El beneficio, en miles de euros, que se obtiene al vender a x € una unidad de un determinado producto viene dado por la fórmula


$$B(x) = -x^2 + 10x - 21$$

- a) Representa la función B(x)
- b) Determina el precio al que hay que vender el producto para obtener el máximo beneficio.



74 Se depositan 500 € a un 1% de interés simple anual. Expresa el interés en función del tiempo y representa la gráfica.

Solución:

75 Escribe la función que da el volumen de un cilindro de 1m de altura en función del radio de la base. Represéntala.

