Ejercicios resueltos de selectividad Matemáticas II Universidad de Extremadura

2000-2014

Vicente González Valle I.E.S. Zurbarán (Badajoz) Agosto 2014

Prólogo

Este libro se ha hecho para uso y disfrute de los alumnos de segundo de bachillerato de la opción científico-tecnológica. Se trata de la novena edición. Espero que tengáis la bondad de perdonar los errores que he cometido al hacerlo.

También agradezco de corazón la colaboración de algunos compañeros y compañeras que tuvieron conocimiento de la primera versión gracias a la Sociedad Extremeña de Educación Matemática "Ventura Reyes Prósper", la cual no sólo comunicó la primera edición, sino que además me permitió obtener los enunciados de todos los años y así ayudarme a clasificarlos. Agradecer a Batildo Requejo Fernández, coordinador de selectividad, el aportarme los ejercicios resueltos. Esto me haquitado bastante trabajo. Destacar el ofrecimiento gratuito de Bernardo Calero Primo para elaborar las gráficas antiguas que estaban un poco cutres.

También agradecer las correcciones, aportaciones e ideas de la coordinadora permanente de selectividad.

Si quieres hacer algún comentario, comunicar algún error o decir algo que se te ocurra, puedes ponerte en contacto conmigo en vicente@vicentegonzalezvalle.es.

Este libro se irá actualizando con los exámenes que cada año vaya poniendo la universidad, incorporando este año los del curso 2014, pudiendo obtenerse la versión actualizada en la página http://www.vicentegonzalezvalle.es.

Por si te es útil te recomiendo ver el curso de moodle que tengo ubicado en el aula virtual de mi centro En el podrás encontrar más material, así como vídeos de muchos tipos de ejercicios. Para acceder pulsa en la categoría de 2º de bachillerato y después en el curso de Matemáticas II que me tiene como profesor. Cuando te pida la contraseña accede como invitado.

Este trabajo se ha hecho utilizando IATEX y su frontend para linux Kile. Para los gráficos se ha usado el software de Geogebra. Gracias a todos los que han hecho posible estos programas y los han compartido gratuitamente con los demás.

Este año sigue teniendo un índice que nos permite elegir cada uno de los exámenes y desde ahí acceder a las soluciones de los problemas, y al final un índice temático, clasificando los ejercicios en tres bloque: Análisis, álgebra y geometría.

Se trata de un trabajo que ofrezco a la comunidad educativa, pero es conveniente saber que se emite bajo una licencia Creative Commons en la que tienes que tener presente que:

Tu eres libre de:

- copiar, distribuir, comunicar y ejecutar públicamente la obra.
- hacer obras derivadas.

Bajo la siguientes condiciones:

Atribución Debes reconocer y citar la obra de la forma especificada por el autor o el licenciante.

No Comercial No puedes utilizar esta obra para fines comerciales.

Licenciar Igual Si alteras o transformas esta obra, o generas una obra derivada, sólo puedes distribuir la obra generada bajo una licencia idéntica a ésta.

- Al reutilizar o distribuir la obra, tienes que dejar bien claro los términos de la licencia de esta obra.
- Alguna de estas condiciones puede no aplicarse si se obtiene el permiso del titular de los derechos de autor.

A mi mujer Mª Teresa, y a mis hijos Ana Mª, Isabel y Vicente.

A los tios Manolo, Chencho, Pepi, Gonzalo, Aurín, Modesto, Caito y Marcial y, como no, al abuelo Paco, los últimos que nos dejaron siendo testigos del amor.

En especial a mi padre Juan Antonio, ya fallecido, que me enseño a servir y actuar gratuitamente en esta vida

Gracias a todos.

ÍNDICE

• EXÁMENES

- Junio 2000 - Opción A	IX
- Junio 2000 - Opción B	X
- Septiembre 2000 - Opción A	XI
- Septiembre 2000 - Opción B	XII
- Junio 2001 - Opción A	XIII
- Junio 2001 - Opción B	XIV
- Septiembre 2001 - Opción A	XV
- Septiembre 2001 - Opción B	XVI
- Junio 2002 - Opción A	XVII
- Junio 2002 - Opción B	XVIII
- Septiembre 2002 - Opción A	XIX
- Septiembre 2002 - Opción B	XX
- Junio 2003 - Opción A	XXI
- Junio 2003 - Opción B	XXII
- Septiembre 2003 - Opción A	XXIII
- Septiembre 2003 - Opción B	XXIV
- Junio 2004 - Opción A	XXV
- Junio 2004 - Opción B	XXVI
- Septiembre 2004 - Opción A	XXVII
- Septiembre 2004 - Opción B	XXVIII
- Junio 2005 - Opción A	XXIX
- Junio 2005 - Opción B	XXX
- Septiembre 2005 - Opción A	XXXI
- Septiembre 2005 - Opción B	XXXII
- Junio 2006 - Opción A	XXXIII
- Junio 2006 - Opción B	XXXIV
- Septiembre 2006 - Opción A	XXXV
- Septiembre 2006 - Opción B	XXXVI
- Junio 2007 - Opción A	XXXVII
- Junio 2007 - Opción B	XXXVIII
- Septiembre 2007 - Opción A	XXXIX
- Septiembre 2007 - Opción B	XL
- Junio 2008 - Opción A	XLI
- Junio 2008 - Opción B	XLII
- Septiembre 2008 - Opción A	XLIII
- Sentiembre 2008 - Onción B	XLIV

- Junio 2009 - Opción A	XLV
- Junio 2009 - Opción B	XLVI
- Septiembre 2009 - Opción A	XLVII
- Septiembre 2009 - Opción B	XLVIII
- Junio 2010 - Fase General - Opción A	XLIX
- Junio 2010 - Fase General - Opción B	L
- Junio 2010 - Fase Específica - Opción A	LI
- Junio 2010 - Fase Específica - Opción B	LII
- Septiembre 2010 - Fase General - Opción A	LIII
- Septiembre 2010 - Fase General - Opción B	LIV
- Septiembre 2010 - Fase Específica - Opción A	LV
- Septiembre 2010 - Fase Específica - Opción B	LVI
- Junio 2011 - Opción A	LVII
- Junio 2011 - Opción B	LVIII
- Septiembre 2011 - Opción A	LIX
- Septiembre 2011 - Opción B	LX
- Junio 2012 - Opción A	LXI
- Junio 2012 - Opción B	LXII
- Septiembre 2012 - Opción A	LXIII
- Septiembre 2012 - Opción B	LXIV
- Junio 2013 - Opción A	LXV
- Junio 2013 - Opción B	LXVI
- Septiembre 2013 - Opción A	LXVII
- Septiembre 2013 - Opción B	LXVIII
- Junio 2014 - Opción A	LXIX
- Junio 2014 - Opción B	LXX
- Julio 2014 - Opción A	LXXI
- Julio 2014 - Opción B	LXXII
Índice Temático	LXXIII

Opción A

1. Calcular, integrando por partes, el valor de

$$\int_{1}^{2} x^{2} lnx dx$$

Solución

2. La matriz de coeficientes de un sistema de ecuaciones lineales homogéneo es M. Hallar un sistema equivalente tal que todos los elementos de la diagonal principal de la nueva matriz asociada sean nulos:

$$M = \left(\begin{array}{rrr} -1 & 0 & 3\\ 3 & 1 & 1\\ 0 & 2 & 1 \end{array}\right)$$

Solución

3. Calcular la distancia del punto de coordenadas (1,1,2) al plano que pasa por los puntos de coordenadas (1,1,0); (1,0,1) y (0,1,1).

Solución

4. Determinar el dominio de definición de la función $f(x) = x - \ln(x^2 - 1)$ y representar su gráfica, calculando los intervalos de crecimiento y los extremos (máximos y mínimos relativos).

Opción B

1. Definir el concepto de derivada de una función f(x) en un punto x = a, y explicar su relación con los máximos relativos de la función.

Solución

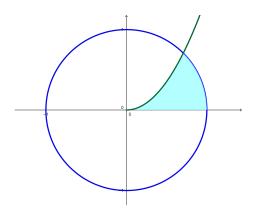
2. Calcular la distancia del punto de coordenadas (3,5,0) a la recta que pasa por los puntos de coordenadas (0,1,2) y (0,1,1).

Solución

3. Dar un ejemplo de un sistema de 2 ecuaciones lineales con 3 incógnitas que sea incompatible.

Solución

4. Calcular el área limitada por la parábola $y=\sqrt{2}x^2$, la circunferencia $x^2+y^2=1$ y el eje OX, que aparece rayada en la figura .



Opción A

1. Definir la suma y el producto de matrices. Dar un ejemplo de dos matrices que no pueden sumarse ni multiplicarse.

Solución

2. Representar gráficamente la función

$$f(x) = 2x^3 - \frac{x^2}{2} - x + \frac{5}{27}$$

¿Cuántas raíces reales positivas tiene este polinomio?

Solución

3. Determinar una función f(x) cuya segunda derivada sea $f''(x) = xe^x$.

Solución

4. Hallar la ecuación de una circunferencia que, siendo tangente a la recta $y=\sqrt{3}~x$, sea tangente al eje de abcisas en el punto (3,0). (Indicación: $tg60^o=\sqrt{3},\,tg30^o=\frac{\sqrt{3}}{3}$)

Opción B

1. Calcular la derivada en el punto x = 1 de la función $f(x) = x^{-1/2} lnx$.

Solución

2. Discutir el siguiente sistema de ecuaciones lineales según el parámetro a:

Solución

3. Calcular, con el cambio de variable $t^2 = x + 3$, el valor de:

$$\int_{1}^{6} \frac{xdx}{\sqrt{x+3}}$$

Solución

4. Determinar una recta que sea paralela al plano de ecuación x + y + z = 3, que corte a la recta de ecuaciones z = 0, y que también corte a la recta de ecuaciones z = 1, y = 0.

Opción A

1. Definir el producto escalar de vectores y enunciar su relación con los conceptos de ángulo y distancia entre dos puntos.

Solución

2. Representa la gráfica del polinomio

$$f(x) = 2x^3 + 3x^2 - 0'2$$

¿Cuántas raíces reales negativas tiene este polinomio? ¿y cuántas positivas?

Solución

3. Calcular alguna recta que sea paralela al plano de ecuación x - 2y + z = 1 y que también sea paralela al plano que pasa por los puntos de coordenadas (2,0,1), (0,2,1) y (1,-1,0).

Solución

4. Determinar una constante positiva a sabiendo que la figura plana limitada por la parábola $y=3ax^2+2x$, la recta y=0 y la recta x=a tiene área $(a^2-1)^2$.

Opción B

1. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

$$\begin{cases}
 ax - ay + az = a \\
 & (3-2a)z = 1 \\
 x + (a-1)y = 0
 \end{cases}$$

Solución

2. Calcular el valor de:

$$\int_0^1 \frac{x dx}{e^{x^2}}$$

(puede hacerse con el cambio de variable $t=-x^2$ y con el cambio de variable $t=x^2$).

Solución

3. Dadas las funciones $f(x) = x^2 + \pi$ y g(x) = senx + cosx, calcula la derivada en x = 0 de las funciones f(g(x)) y g(f(x)).

Solución

4. Calcular un vector de módulo 1 que sea ortogonal a los vectores de coordenadas (1,0,2) y (2,1,0).

Opción A

1. Enunciar el teorema de Bolzano. Calcular, con un error menor que una décima, una raíz positiva del polinomio x^3+x-1

Solución

2. Calcular alguna recta que sea paralela al plano de ecuación x+z=2 y corte perpendicularmente a la recta de ecuaciones x+y=0, y+z=2.

Solución

3. Determinar todos los números reales x para los que es positivo el determinante

$$\begin{array}{|c|c|c|c|c|c|}
3 & -3 & x \\
1-x & x+1 & -1 \\
2 & 0 & x
\end{array}$$

Solución

4. Representar gráficamente el recinto plano limitado por la curva $y=x^3-x$ y su tangente en el punto de abscisa x=1. Calcular su área.

Opción B

1. Definir el concepto de primitiva de una función y explicar su relación con el concepto de integral definida.

Solución

2. Calcular todas las matrices X tales que AX + B = X, donde

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) \ , \ B = \left(\begin{array}{cc} 1 & -2 \\ 0 & -1 \end{array}\right)$$

Solución

3. Entre todos los rectángulos de área dada ¿cuál es el de perímetro mínimo?

Solución

4. ¿Qué ángulo deben formar dos vectores no nulos \vec{e} y \vec{v} para que ambos tengan el mismo módulo que su diferencia $\vec{e}-\vec{v}$.

Opción A

1. Definir el concepto de derivada de una función f(x) en un punto x=a y explicar su relación con el crecimiento de la función.

Solución

2. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Solución

3. Representar gráficamente la figura plana limitada por las parábolas $y=4-x^2, y=x^2-4$. Calcular su área.

Solución

4. Hallar dos vectores linealmente independientes que sean ortogonales al vector \vec{e} de coordenadas (1,1,3).

Opción B

1. Representar la gráfica de la función $f(x) = 2x + (2x)^{-1}$, determinando los intervalos donde es creciente.

Solución

2. Calcular la matriz X tal que AX = B, donde

$$A = \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right) , B = \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)$$

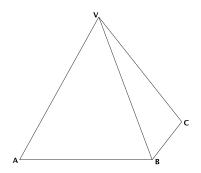
Solución

3. Calcular el valor de la integral

$$\int_0^1 x e^{-x} dx$$

Solución

4. La base de una pirámide es un cuadrado ABCD de 2 metros de largo y su vértice V está situado a una altura de 3 metros sobre el centro de la base. Calcular el ángulo que forman los planos ABV y BCV.



Opción A

1. Representar la gráfica de la función $f(x) = x^3 + x^{-3}$, determinando sus extremos (máximos y mínimos relativos).

Solución

2. Representa gráficamente el recinto plano limitado, en la región donde la coordenada x es positiva, por la recta x = 1, la hiperbola xy = 1, y la recta 6y - x + 1 = 0. Calcula su área.

Solución

3. La matriz de coeficientes de un sistema de ecuaciones lineales homogéneo es M. Hallar un sistema equivalente tal que los tres coeficientes que están por encima de la diagonal principal de la nueva matriz asociada sean nulos:

$$M = \left(\begin{array}{rrr} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 0 & 4 & 4 \end{array}\right)$$

Solución

4. Determinar si el plano 3x - 2y + z = 1 es perpendicular a la recta de ecuaciones -x = 3y + 3z, y + 2z = -1. Determinar también si es paralelo a la recta que pasa por los puntos de coordenadas (1, -1, 1) y (-1, -1, 0).

Opción B

1. Enuncia la regla de L'Hôpital y calcula el límite

$$\lim_{x\to 1}\frac{1-\cos(2\pi x)}{(x-1)^2}$$

Solución

2. Discutir el siguiente sistema de ecuaciones lineales según los valores del parámetro a:

$$\begin{array}{rcl}
ay & + & az & = 0 \\
x & & + & z & = 0 \\
4x & - & 2y & + & az & = a
\end{array}$$

Solución

3. Calcular el área del cuadrilátero cuyos vértices son los puntos de coordenadas (1,0,1), (2,0,2),(3,1,3) y (1,2,1).

Solución

4. Calcular una primitiva de la función $f(x) = (x^2 + 1)^{-1} x$ que se anule en x = 2.

Opción A

1. Determinar el valor del parámetro a para que las siguientes ecuaciones lineales sean linealmente dependientes

$$\begin{array}{rclrcl}
x & + & y & + & z & = 1 \\
3x & + & 2y & + & z & = 1 \\
y & + & 2z & = a
\end{array}$$

Solución

2. Representar gráficamente el recinto plano limitado por la recta y=x-2 y la parábola de ecuación $y^2=x$. Calcular su área.

Solución

3. Representar gráficamente la función $f(x) = e^x - ex$, determinando sus extremos relativos (máximos y mínimos relativos). ¿Existe algún valor de x en que f(x) sea negativo?

Solución

4. Determinar una constante a para que el plano de ecuación ax + y + z = 2 forme un ángulo de $\pi/3$ radianes con el plano z = 0.

Opción B

1. Enunciar el teorema de Bolzano y determinar si el polinomio x^4-4x^2-1 tiene alguna raiz real negativa.

Solución

2. Calcular el valor de la siguiente integral, donde \ln denota el logaritmo neperiano:

$$\int_{e}^{e^{2}} \frac{dx}{x(lnx)}$$

Solución

3. Determinar una recta tangente a la parábola $y=2-x^2$ que sea paralela a la recta de ecuación 2x+y=4.

Solución

4. Calcular dos números naturales a,b menores que 10 y tales que la siguiente matriz A tenga rango 2:

$$\left(\begin{array}{ccc}
2 & 2 & b \\
0 & 5 & a \\
3 & 1 & b
\end{array}\right)$$

Opción A

1.	Par un ejemplo de una sistema de 3 ecuaciones lineales con tres incógnitas que sea compatib)l
	indeterminado. Interprétalo geométricamente.	

Solución

2. Con un alambre de dos metros se desea formar un cuadrado y un círculo. Determinar el lado del cuadrado y el radio del círculo para que la suma de sus áreas sea mínima.

Solución

3. Calcular el valor de la integral (puede hacerse con el cambio de variable $t = e^{-x}$):

$$\int_0^1 \frac{dx}{e^x + 1}$$

Solución

4. Sabiendo que los lados de un rectángulo \overrightarrow{ABCD} miden 1 y 3 metros, calcular el producto escalar de los vectores \overrightarrow{CB} y \overrightarrow{AD} , y el módulo del producto vectorial de los vectores \overrightarrow{CB} y \overrightarrow{BA} .

Opción B

1. Definir el producto de matrices. Dar un ejemplo de dos matrices A, B con 2 filas y 2 columnas, tales que $A \cdot B$ no coincida con $B \cdot A$.

Solución

2. Determinar un plano que, pasando por el origen de coordenadas, sea paralelo a la recta de ecuaciones x + y = 1, y + z = 2, y también sea paralelo a la recta que pasa por los puntos de coordenadas (1,1,0) y (0,1,1).

Solución

3. Representar gráficamente la figura plana limitada por la curva $y=e^x$, su recta tangente en el punto de abcisa x=0, y la recta x=1. Calcular su área.

Solución

4. Determinar en qué puntos es negativa la derivada de la función $f(x) = e^x x^{-2}$.

Opción A

1. Definir el concepto de primitiva de una función. ¿Existe alguna primitiva de la función $f(x) = x^{-1}$ que no tome ningún valor positivo en el intervalo $1 \le x \le 2$?

Solución

2. Calcular la ecuación del plano que pasa por los puntos de coordenadas (1,0,0); (0,1,1); (1,2,0). Determinar la distancia del punto (2,1,1) a dicho plano.

Solución

3. Determinar el mayor área que puede encerrar un triángulo rectángulo cuyo lado mayor mida 1 metro.

Solución

4. Determinar todas las matrices X tales que $A \cdot X = X \cdot A$, donde:

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)$$

Opción B

1. ¿Qué relación hay entre los coeficientes de las ecuaciones

$$ax + by + cz = d$$
, $a'x + b'y + c'z = d'$

de dos planos paralelos? Razonar la respuesta.

Solución

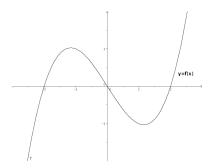
2. Hallar una matriz con tres filas y tres columnas que tenga tres elementos nulos y tal que ninguno de sus menores de orden dos sea nulo.

Solución

3. Representa gráficamente el recinto plano limitado, en la región donde la abcisa x es positiva, por la curva $y=x^3+x$, y por la recta y=2x. Calcular el área.

Solución

4. Si la gráfica de una función f(x) es:



representar aproximadamente la gráfica de la derivada f'(x).

Opción A

1. Definir el concepto de rango de una matriz. Dar un ejemplo de una matriz con 3 filas y 4 columnas que tenga rango 2.

Solución

2. Determinar una recta que sea paralela al plano que pasa por los puntos de coordenadas (1,1,0); (1,0,1) y (0,1,1), que también sea paralela al plano x+2y+3z=0, y que no esté contenida en ninguno de estos dos planos.

Solución

3. Representar gráficamente la figura plana limitada en el primer cuadrante $(x \ge 0, y \ge 0)$ por la recta y = x y la curva $x = y^3$. Calcular su área.

Solución

4. Se desea construir un paralelepípedo rectangular de 9 litros de volumen y tal que un lado de la base sea doble que el otro. Determinar las longitudes de sus lados para que el área total de sus 6 caras sea mínima.

Opción B

1. Enunciar el teorema de Bolzano y usarlo para probar que la ecuación $x=\cos x$ tiene solución positiva.

Solución

2. ¿Puede aumentar el rango de una matriz cuadrada de 3 filas al sustituir un coeficiente no nulo por 0?¿y permanecer igual?. Justificar las respuestas.

Solución

3. Calcular el valor de la siguiente integral:

$$\int_{1}^{2} x \sqrt[3]{x^2 - 1} dx$$

(puede hacerse con el cambio de variable $x^2 - 1 = t^3$.

Solución

4. Determinar los puntos de la curva plana $y^3 = 2x$ en que la recta tangente es perpendicular a la recta y + 6x = 0.

Opción A

1. Determinar un valor del parámetro a para que el siguiente sistema de ecuaciones lineales sea compatible e indeterminado.

$$x + y + z = 0$$

$$x \quad -y \quad +z \quad =1$$

$$x \quad -3y \quad +z \quad =0$$

Solución

2. Representar gráficamente el recinto plano limitado por las curvas $y=e^x$, $y=e^{-x}$, y por la recta x=1. Calcular su área.

Solución

3. Hallar la derivada en x = 0 de la función f(f(x)), donde $f(x) = (1 + x)^{-1}$.

Solución

4. Determinar las coordenadas de un punto que diste 2 unidades de la recta

$$\frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$$

Opción B

1. Dar un ejemplo de un sistema de 3 ecuaciones lineales con tres incógnitas que sea incompatible. Interprétalo geométricamente.

Solución

2. Calcular el valor de la siguiente integral:

$$\int_{1}^{e} \frac{\ln x}{x^2} dx$$

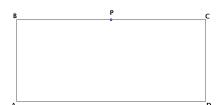
(puede hacerse por partes).

Solución

3. Representar gráficamente la función f(x) = x - 2senx en el intervalo $-\pi < x < \pi$, determinando sus extremos (máximos y mínimos relativos).

Solución

4. Si los lados de un rectángulo ABCD miden 1 cm y 4 cm, calcular el coseno del ángulo PAC, donde P es el punto medio del lado BC:



Opción A

1. Enunciar el Teorema del Valor Medio del Cálculo Diferencial. Usarlo para demostrar que para cualesquiera números reales x < y se verifica que $cosy - cosx \le y - x$.

Solución

2. Resolver el sistema de ecuaciones lineales

$$y -x = z$$

$$x -z = y$$

$$y +z = x$$

Solución

- 3. Si A, B y C son los puntos de coordenadas (1,0,0); (0,1,0) y (0,0,1) respectivamente
 - a) Calcular el área del triángulo que forman los puntos A, B y C.
 - b) Determinar el ángulo que forman los vectores \overrightarrow{AB} y \overrightarrow{AC} .

Solución

4. Calcular una primitiva de la función $f(x) = (x+1)^2 x^{-1/2}$ que se anule en x=1.

Opción B

1. Dar un sistema de tres ecuaciones lineales con tres incógnitas que sea compatible e indeterminado. Interpretarlo geométricamente.

Solución

2. Hallar la derivada en el punto x = 0 de la función f(f(x)), donde f(x) = senx.

Solución

3. Hallar un vector de módulo 1 que sea ortogonal a los vectores de coordenadas (0,1,1) y (2,1,0).

Solución

4. Representar gráficamente el recinto plano limitado por la recta x-y=1 y por la curva de ecuación $y=\sqrt{x-1}$. Calcular su área.

Opción A

1. Calcula

$$\lim_{x \to 0} \frac{1 + x - e^x}{sen^2 x}$$

Solución

2. Representa gráficamente la figura plana limitada por la curva $y=x^4$, su recta tangente en el punto (1,1) y el eje OY. Calcular su área.

Solución

3. Determina la relación que debe existir entre a y b para que los puntos de coordenadas (1,0,0),(a,b,0),(a,0,b) y (0,a,b) estén en un plano.

Solución

4. Sea A una matriz cuadrada tal que $A^2 = A + I$, donde I es la matriz unidad. Demuestra que la matriz A es invertible.

$\begin{array}{c} {\rm JUNIO~2006} \\ {\rm Opci\'{o}n~B} \end{array}$

1. Define el concepto de máximo relativo de una función f(x) y enuncia su relación con las derivadas sucesivas de f(x).

Solución

2. Halla una primitiva de la función $f(x) = xe^x$.

Solución

3. Determina el plano que pasa por el punto de coordenadas (1,2,3) y por la recta de ecuaciones x+y=1,y+z=1.

Solución

4. Discute el sistema de ecuaciones lineales

según los valores de b.

Opción A

1. Resuelve el sistema de ecuaciones lineales

$$x +2y -z = 1$$

$$x +y -z = 1$$

$$x -z = 1$$

Solución

2. Calcula el ángulo que forma el plano x+y+z=0 con la recta de ecuaciones x+y=1, y+z=1.

Solución

3. Dada la función

$$f(x) = \frac{senx + sen(x+1)}{cosx - cos(x+1)}$$

en el intervalo $0 < x < 2\pi$, calcula su derivada, simplificándola en lo posible. ¿Es constante esta función f(x)?

Solución

4. Enuncia la regla de Barrow. Representa la gráfica de la función

$$f(x) = \int_{1}^{x} t dt$$

Opción B

1. Determina el plano que pase por los puntos de coordenadas (1,0,0) y (0,1,0), y sea paralelo a la recta

$$\begin{array}{ccccc} x & +y & +z & =2 \\ x & -y & +z & =2 \end{array}$$

Solución

2. Escribe un ejemplo de una matriz de rango 2, con 3 filas y 4 columnas, que no tenga ningún coeficiente nulo.

Solución

3. Calcula las asíntotas y determina los intervalos de crecimiento y decrecimiento de la función $f(x) = (1+x^2)^{-1}x$. A partir de los resultados obtenidos, dibuja la gráfica de la función f(x).

Solución

4. Representa la figura plana limitada por la gráfica de la función f(x)=cosx, en el intervalo $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, y por la recta $y=\frac{1}{2}$. Calcular su área.

Opción A

- 1. a) Enuncia la regla de la cadena para derivar funciones compuestas.
 - b) Dada la función $h(x) = e^{sen(f(x))}$, calcula el valor de su derivada en x = 0, sabiendo que f(0) = 0 y f'(0) = 1.

Solución

2. Representa gráficamente el recinto plano limitado por las parábolas $y=1-x^2$ e $y=2x^2$ y calcula su área.

Solución

3. a) Calcula el rango de la matriz A, según los valores del parámetro a

$$\left(\begin{array}{cccc}
1 & 2 & 3 & a \\
2 & 4 & 6 & 8 \\
3 & 6 & 9 & 12
\end{array}\right)$$

b) Escribe las propiedades del rango que hayas usado.

Solución

4. Determina la relación que debe existir entre a y b para que el punto P = (0, a, b) esté en el plano determinado por los puntos A = (1, 0, 0), B = (1, 1, 1) y C = (0, 2, 1).

Opción B

1. Determina los puntos de la parábola $y = x^2$ que están a mínima distancia del punto P = (0, 1).

Solución

2. Calcula el valor de la integral

$$\int_{3}^{10} (x-2)^{1/3} dx$$

Solución

- 3. a) Enuncia el Teorema de Rouché-Frobenius.
 - b) Discute el siguiente sistema de ecuaciones lineales, según los valores del parámetro a:

$$x + y + z = a$$

$$x + y + az = 1$$

Solución

4. Escribe un vector de módulo 1 que sea ortogonal al vector de coordenadas (1,2,1).

Opción A

- 1. a) Enuncia el Teorema de Rolle.
 - b) Prueba que la función $f(x) = x^3 + x^2 x 1$ satisface las hipótesis en el intervalo [-1,1] y calcula un punto del intervalo abierto (-1,1) cuya existencia asegura el Teorema de Rolle.

Solución

2. Representa gráficamente la figura plana limitada por la curva $y = 2x^3$, su recta tangente en el origen de coordenadas y la recta x = 2. Calcula su área.

Solución

- 3. Sea A una matriz cuadrada de orden 3.
 - a) Si sabemos que el determinante de la matriz 2A es |2A| = 8. ¿Cuánto vale el determinante de A? Escribe la propiedad de los determinantes que hayas usado para obtener este valor.
 - b) Calcula para qué valores de x se cumple que |2A| = 8, siendo A la matriz

$$A = \left(\begin{array}{ccc} x & 1 & 1\\ x+1 & 2 & 2\\ x & 2-x & 1 \end{array}\right)$$

Solución

4. Calcula el área del triángulo cuyos vértices son los puntos de corte del plano x+y+z=1 con los ejes coordenados.

Opción B

- 1. a) Enuncia el Teorema del Valor Medio del Cálculo Integral.
 - b) Calcula el punto al que se refiere dicho teorema para la función $f(x) = 3x^2 + 1$ en el intervalo [0,3]

Solución

- 2. Para la función $f(x) = x^2 \cdot e^{-x}$:
 - a) Comprueba que la recta y = 0 es una asíntota horizontal en $+\infty$.
 - b) Determina los intervalos de crecimiento y decrecimiento.
 - c) Con los datos anteriores, haz una representación aproximada de la gráfica de la función $f(x) = x^2 \cdot e^{-x}$.

Solución

3. Calcula la matriz X tal que $A^2X = A$, donde

$$A = \left(\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right)$$

Solución

4. a) Determina la posición relativa de plano x - y + z = 2 y la recta de ecuaciones

$$\frac{x}{2} = \frac{y+1}{1} = \frac{z+2}{-1}$$

b) Calcula la distancia entre la recta y el plano anteriores.

Opción A

- 1. a) Enuncia la condición que se debe cumplir para que una recta y = l sea asíntota horizontal de una función f(x) en $+\infty$.
 - b) Calcula las asíntotas verticales y horizontales (en $+\infty$ y en $-\infty$) de la función

$$f(x) = \frac{3x - 1}{\sqrt{x^2 - 1}}$$

Solución

2. Calcula el valor de la siguiente integral (puede hacerse con el cambio de variable t = ln(x))

$$\int_{1}^{e} \frac{1}{x \left(1 + \ln(x)\right)} dx$$

donde ln denota el logaritmo neperiano.

Solución

3. Discute, en función del parámetro a, el sistema de ecuaciones (NO es necesario resolverlo en ningún caso)

Solución

4. Sean \vec{u} y \vec{v} dos vectores ortogonales de módulo 4 y 3 respectivamente. Calcula el módulo de los vectores $\vec{u} + \vec{v}$ y $\vec{u} - \vec{v}$, indicando los resultados teóricos en que te basas para ello.

Opción B

1. Calcula el siguiente límite:

$$\lim_{x \to 0} \frac{(e^x - 1)^2}{e^{x^2} - 1}$$

Solución

- 2. a) Representa gráficamente el recinto plano limitado por la recta y+2x-6=0 y la parábola $y=-x^2+2x+3$.
 - b) Calcula su área.

Solución

3. Determina el rango de la matriz A según los valores de b:

$$A = \left(\begin{array}{ccc} -1 & 2 & b \\ b & b - 3 & -1 \\ 0 & 2 & 1 \end{array} \right)$$

Solución

4. Sean \vec{a} y \vec{b} dos vectores no proporcionales del espacio real tridimensional. ¿Qué relación existe entre las direcciones de \vec{a} y \vec{b} y la dirección de su producto vectorial? ¿Cuánto vale el módulo del producto vectorial de \vec{a} y \vec{b} ?

Opción A

1. a) Calcula el siguiente límite

$$\lim_{x \to 0} \frac{\ln\left(x^2 + 1\right)}{x}$$

b) Indica, razonadamente, el valor que debe tomar a para que la siguiente función sea continua:

$$f(x) = \begin{cases} a & si \quad x = 0\\ \frac{\ln(x^2 + 1)}{x} & si \quad x \neq 0 \end{cases}$$

Nota: In denota el logaritmo neperiano.

Solución

2. Calcula la función f(x) cuya gráfica pasa por el punto (0,1) (es decir, f(0)=1) y que tiene como derivada la función $f'(x)=\frac{2x}{x^2+1}$.

Solución

- 3. a) Define el concepto de rango de una matriz.
 - b) Determina razonadamente si la tercera fila de la matriz A es combinación lineal de las dos primeras

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{array}\right)$$

Solución

- 4. a) Determina la recta que pasa por el punto (1,1,1) y es perpendicular al plano x+y=1.
 - b) Calcula el punto donde la recta obtenida corta al plano dado x + y = 1.

Opción B

1. Halla los puntos de la curva de ecuación $y=x^3-2x^2+1$ donde la recta tangente es paralela a la recta y+x-2=0.

Solución

- 2. a) Define el concepto de primitiva de una función.
 - b) Di, razonando la respuesta, si las funciones $F_1(x) = sen^2 x$ y $F_2(x) = -cos^2 x$ son primitivas de una misma función.

Solución

3. Discute el siguiente sistema de ecuaciones lineales, según el valor del parámetro a:

$$\begin{array}{rcl}
ax & + & ay & = & 0 \\
x & + & z & = & a \\
-2y & + & az & = & a
\end{array}$$

No es necesario resolver el sistema en ningún caso.

Solución

4. a) Determina el plano que pasa por el punto de coordenadas (1,1,1) y corta perpendicularmente a la recta

$$\frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{1}$$

b) Calcula el punto donde se cortan la recta y el plano.

Opción A

- 1. Sea A una matriz cuadrada de orden 3. Sabemos que el determinante de A es |A| = 2. Calcula los siguientes determinantes:
 - a) |2A|.
 - b) $|A^{-1}|$.
 - c) $|A \cdot A^t|$ (A^t es la traspuesta de la matriz A).
 - d) Determinante de la matriz obtenida al intercambiar las dos primeras columnas de A.
 - e) Determinante de la matriz que se obtiene al sumar a la primera fila de A la segunda multiplicada por 2.

Solución

2. Dadas las rectas

$$r: \left\{ \begin{array}{llll} x+y+z=0 \\ x-y+z=1 \end{array} \right. \; , \; \; r': \left\{ \begin{array}{lllll} x & + & y & + & z & = 0 \\ ax & + & + & bz & = 0 \end{array} \right.$$

determine la relación que debe existir entre a y b para que:

- a) r y r' sean paralelas.
- b) r y r' sean perpendiculares.

Solución

- 3. a) Diga cuando un punto $(x_0, f(x_0))$ es de inflexión para una función f(x).
 - b) Calcule los coeficientes a y b del polinomio $p(x) = ax^3 3x^2 + bx + 1$ para que su gráfica pase por el punto (1,1), teniendo aquí un punto de inflexión.
 - c) Diga, razonadamente, si en el punto (1,1) la función p(x) es creciente o decreciente.

Solución

- 4. a) Exprese $f(x) = x \cdot |x|$ como una función definida a trozos y dibuje su gráfica de forma aproximada.
 - b) Calcule la integral definida $\int_{-1}^{1} x \cdot |x| dx$.
 - c) Calcule el área del recinto plano limitado por la gráfica de f(x), el eje OX, la recta x=-1 y la recta x=1.

Opción B

1. Calcule los máximos y mínimos relativos de la función $f(x) = \frac{x}{2} + \cos x$ en el intervalo $0 < x < 2\pi$. Tenga en cuenta que los ángulos se miden en radianes.

Solución

- 2. a) Escriba la fórmula, o regla, de integración por partes.
 - b) Aplíquela para calcular la siguiente integral indefinida

$$\int x^2 \cos x dx$$

Solución

3. Determine el rango de la matriz A siguiente según los valores del parámetro b:

$$A = \left(\begin{array}{ccc} 0 & b & b \\ 1 & 0 & 1 \\ b & -2 & 0 \end{array}\right)$$

Solución

4. a) Calcule el punto de corte del plano $\Pi: x+y=0$ y la recta

$$r: \left\{ \begin{array}{lll} x = & \lambda \\ y = & -2 \\ z = & 1 & + \lambda \end{array} \right.$$

b) Determine la recta s que está contenida en el plano Π y corta perpendicularmente a r.

Opción A

1. Considere las matrices:

$$A = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}, B = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, O = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

- a) Diga razonadamente cuál es el rango de la matriz $A \cdot B$.
- b) Clasifique y resulva el sistema de ecuaciones:

$$A \cdot B \cdot X = O$$

Solución

- 2. Considere las rectas $r: \left\{ \begin{array}{ll} x=& \lambda \\ y=& -\lambda \\ z=& 1 \end{array} \right.$ y $s: \left\{ \begin{array}{ll} x+y=0 \\ x-z=1 \end{array} \right.$
 - a) Compruebe que r y s son coplanarias.
 - b) Obtenga las ecuaciones de la recta que corta a r y a s, y es perpendicular a ambas.

Solución

- 3. a) Enuncie el teorema de Rolle.
 - b) Aplique dicho teorema para probar que, cualquiera que sea el valor del número real a, la ecuación $x^3 12x + a = 0$ no puede tener dos soluciones distintas en el intervalo cerrado [-2,2].

Solución

- 4. Dada la parábola de ecuación $y = -x^2 2x + 3$, sea r su recta tangente en x = -1 y sea s su recta tangente en x = 1.
 - a) Calcule las ecuaciones de r y de s.
 - b) Represente, de forma aproximada, el recinto plano limitado por la parábola, la recta r y la recta s.
 - c) Calcule el área de dicho recinto.

Opción B

1. a) Calcule el límite

$$\lim_{x \to 0} \frac{e^x - 1}{x}$$

b) Diga, razonadamente, el valor que debe tomar c para que la siguiente función sea continua:

$$f(x) = \begin{cases} \frac{e^x - 1}{x} & si \quad x \neq 0 \\ c & si \quad x = 0 \end{cases}$$

Solución

2. a) Calcule una primitiva de la función racional

$$f(x) = \frac{1}{1 - x^2}$$

b) Calcule la integral $\int \frac{1}{\cos x} dx$ (puede utilizarse el cambio de variable t = senx).

Solución

- 3. Considere la matriz $A = \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix}$.
 - a) Calcule el determinante de A y compruebe la igualdad

$$|A| = (b-a)(c-a)(c-b)$$

b) ¿Qué relación debe existir entre a, b y c para que el rango de la matriz A sea igual a 1? Justifique la respuesta.

Solución

- 4. a) Compruebe que la recta $r: \left\{ \begin{array}{ll} x=&1&+&\lambda\\ y=&&\lambda \ \end{array} \right.$ es perpendicular al plano $\Pi: x+y+z=1.$ $z=&\lambda$
 - b) Calcule los dos puntos de la recta r cuya distancia al plano Π es igual a $\sqrt{3}$ unidades.

JUNIO 2010 FASE GENERAL Opción A

- 1. a) Enuncie el teorema de Bolzano.
 - b) Aplique el teorema de Bolzano para probar que la ecuación $e^x = -2x^2 + 2$ tiene soluciones. (Puede ser útil dibujar las gráficas de las funciones $f(x) = e^x$ y $g(x) = -2x^2 + 2$.)
 - c) Determine un intervalo de longitud 1 donde se encuentre alguna solución de la ecuación $e^x = -2x^2 + 2$.

Solución

- 2. a) Represente, de forma aproximada, la recta x = 1 y las curvas $y = \frac{x^2}{2}$, $y = \frac{4}{x}$, y señale el recinto plano limitado por ellas.
 - b) Calcule el área de dicho recinto.

Solución

3. a) Discute el sistema de ecuaciones lineales:

b) Resuelve el anterior sistema.

Solución

4. Calcula el ángulo que forma el plano $\sqrt{3}x - z = 3$ con la recta de ecuaciones x + y = 1, y - x = -1 (Los ángulos se miden en radianes)

JUNIO 2010 FASE GENERAL Opción B

- 1. a) Escriba la "regla de la cadena" para la derivación de funciones compuestas.
 - b) Calcule, y simplifique en lo posible, la derivada de la función

$$f(x) = ln\left(\frac{1 - cosx}{1 + cosx}\right), \qquad 0 < x < \pi$$

Solución

- 2. a) Diga cuándo una función F(x) es primitiva de otra función f(x).
 - b) Calcule una primitiva F(x) de la función $f(x) = xe^{x^2}$ que cumpla F(0) = 0.

Solución

3. Determine el rango de la matriz A según los valores de b:

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ b+1 & 1 & 1 \\ 1 & b & b-1 \end{array}\right)$$

Solución

4. De todos los planos que pasan por los puntos P=(0,0,-1) y Q=(1,0,0), calcule uno que sea paralelo a la recta de ecuaciones $x+y=1,\,x-z=0$

JUNIO 2010 FASE ESPECÍFICA Opción A

1. Calcule el límite

$$\lim_{x\to 0}\frac{e^x-xcosx-1}{senx-x+1-cosx}$$

Solución

2. Calcule, utilizando la fórmula de integración por partes, una primitiva F(x) de la función $f(x) = x^2 e^{-x}$ que cumpla F(0) = 0.

Solución

- 3. a) Defina el concepto de rango de una matriz.
 - b) Calcule el rango de la matriz

$$A = \left(\begin{array}{rrr} -1 & 1 & 1\\ 1 & 2 & -1\\ -2 & 1 & 2 \end{array}\right)$$

c) Diga, razonadamente, si la segunda columna de la matriz A anterior es combinación lineal de las otras dos columnas.

Solución

4. Determine la relación que deben cumplir λ y μ para que la distancia del punto $P=(\lambda,1,\mu)$ al plano determinado por los puntos $A=(1,1,1),\ B=(1,0,0)$ y C=(0,2,1) sea igual a 1.

JUNIO 2010 FASE ESPECÍFICA Opción B

- 1. a) Defina la noción de mínimo relativo de una función.
 - b) Para cada x sea h(x) la suma de las coordenadas del punto (x, f(x)) de la gráfica de $f(x) = x^4 + x^3 + x^2 x + 1$. Calcule los extremos relativos de h(x).
 - ¿Tiene h(x) algún extremo absoluto? Razone la respuesta.

Solución

- 2. a) Represente, de forma aproximada, la curva $y = x^4 + 2x^2 + 1$ y la recta tangente a dicha curva en el punto $Q_0 = (-1, 4)$.
 - b) Señale el recinto plano limitado por el eje OY y por la curva y la recta del apartado anterior, y calcule el área de dicho recinto.

Solución

3. Discute, en función del parámetro b, el sistema de ecuaciones

$$\begin{cases}
bx + by & = 1 \\
3x + bz = b-2 \\
- y + z = b-3
\end{cases}$$

(no es necesario resolverlo en ningún caso).

Solución

DD

4. Dados los puntos $A=(1,1,1),\ B=(1,0,0)$ y C=(0,2,1), sea r la recta que pasa por A y B, y sea Π el plano que pasa por C y es perpendicular a r. Calcule el punto P_0 en el que se cortan r y Π .

FASE GENERAL

Opción A

1. Diga, razonando la respuesta, qué valor debe tomar c para que sea continua la función:

$$f(x) = \begin{cases} c & \text{si } x = 0\\ \frac{e^x - 1 - x}{x^2} & \text{si } x \neq 0 \end{cases}$$

Solución

2. Calcule el valor de la integral

$$\int_{1}^{2} \left(\frac{x-1}{8}\right)^{2/3} dx$$

Solución

3. a) Diga, justificando la respuesta, si es de Cramer el siguiente sistema de ecuaciones:

b) Resuelva el anterior sistema de ecuaciones.

Solución

4. Fijados los puntos A=(1,0,0) y B=(0,1,0), obtenga la relación que deben cumplir los número reales λ y μ para que el punto $P=(\lambda,\mu,0)$ sea tal que el triángulo ABP tenga área igual a 1.

FASE GENERAL Opción B

1. Halle todos los puntos de la gráfica de la función $f(x) = x^3 + x^2 + x + 1$ en los que su recta tangente sea paralela a la recta de ecuación 2x - y = 0.

Solución

- 2. a) Represente, de forma aproximada, el recinto plano limitado por la parábola $y=2x^2$ y la parábola $y=x^2+4$.
 - b) Calcule el área de dicho recinto.

Solución

- 3. a) Sean $B \neq C$ matrices cuadradas de orden 3. Diga cuándo, por definición, C es la matriz inversa de B.
 - b) Diga razonadamente si la matriz

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right)$$

tiene inversa, y si la respuesta es afirmativa calcule la matriz A^{-1} .

Solución

- 4. Sea θ el ángulo formado por los vectores $\vec{u}=(\lambda,1,0)$ y $\vec{v}=(1,\mu,0)$, donde λ y μ son número reales.
 - a) Obtenga la relación que deben cumplir λ y μ para que se cumpla que $\cos\theta = 0$.
 - b) Obtenga la relación que deben cumplir λ y μ para que se cumpla que $sen\theta=0$.

FASE ESPECÍFICA

Opción A

1. Considere las funciones $f(x) = sen^2 x$ y

$$g(x) = \int_0^x \frac{1}{2(1-t)} dt, \ 0 < x < 1$$

Calcule la derivada de la función $F(x) = g(f(x)), \frac{-\pi}{2} < x < \frac{\pi}{2}$. Simplifique en lo posible dicha derivada.

Solución

- 2. a) Represente, de forma aproximada, la figura plana limitada por la hipérbola xy = 1, su recta tangente en el punto (1,1) y la recta x=2
 - b) Calcule el área de dicha región plana.

Solución

3. Discuta, en función del parámetro a, el sistema de ecuaciones

(no es necesario resolverlo en ningún caso).

Solución

4. Considere las rectas $r: \left\{ \begin{array}{ll} x=1 \\ y=z \end{array} \right.$ y $s: \left\{ \begin{array}{ll} y=0 \\ x=z \end{array} \right.$

Obtenga un punto P de r y un punto Q de s tales que el vector \overrightarrow{PQ} tenga módulo igual a 1 y sea ortogonal al vector (-1,0,1)

FASE ESPECÍFICA

Opción B

- 1. a) Estudie el dominio, los extremos relativos, la curvatura (intervalos de concavidad y de convexidad) y los puntos de inflexión de la función $f(x) = ln(1 + x^2)$ (ln denota el logaritmo neperiano).
 - b) Represente la gráfica de $f(x) = ln(1+x^2)$ utilizando los datos obtenidos en el apartado (a).

Solución

2. Calcule las primitivas de la función

$$f(x) = \frac{1}{e^x - e^{-x}}, \, x > 0$$

(Puede utilizarse el cambio de variable $t = e^x$.)

Solución

3. Determine el rango de la matriz A según los valores de a:

$$A = \left(\begin{array}{ccc} 0 & 1 & 2\\ a+1 & -1 & a-2\\ -1 & a+1 & 2 \end{array}\right)$$

Solución

- 4. a) Determine el plano Π que pasa por el punto (1,0,1) y es perpendicular a la recta de ecuaciones $x+y+z=0,\,x-z=1.$
 - b) Calcule el punto en el que se cortan r y Π .

Opción A

- 1. a) Enuncie el teorema de Rolle.
 - b) Pruebe que cualquiera que sea la constante a la función $f(x) = x^3 5x^2 + 7x + a$ cumple las hipótesis de dicho teorema en el intervalo [1, 3]. Calcule un punto del intervalo abierto (1, 3) cuya existencia asegura el teorema de Rolle.

Solución

- 2. a) Represente, de forma aproximada, la figura plana limitada por la curva $y = -2(x-1)^3$, su recta tangente en el punto (1,0) y la recta x = 0 (Puede ser útil calcular los cortes de la curva $y = -2(x-1)^3$ con los ejes coordenados.)
 - b) Calcule el área de dicha figura plana.

Solución

3. Calcule las matrices de la forma $X=\left(\begin{array}{cc} x & 1\\ y & 0 \end{array}\right)$ que cumplen la ecuación:

$$X \cdot X^t = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$$

donde X^t es la matriz traspuesta de X

Solución

- 4. a) Estudie, en función de los parámetros a y b, la posición relativa de la recta r: $\begin{cases} x = 0 \\ y = 0 \end{cases}$ y el plano $\Pi \equiv x + y + az = b$.
 - b) Para cada una de las posiciones obtenidas, diga cómo es el sistema formado por las tres ecuaciones

$$x = 0, \qquad \quad y = 0, \qquad \quad x + y + az = b$$

Opción B

- 1. a) Enuncie el Teorema del Valor Medio del Cálculo Integral.
 - b) Calcule el punto al que se refiere dicho teorema para la función $f(x) = e^x + 1$ en el intervalo [0,1].

Solución

- 2. a) Estudie las asíntotas, los extremos relativos y los puntos de inflexión de la función $f(x) = xe^{-x}$.
 - b) Represente, utilizando los datos obtenidos en el apartado anterior, la gráfica de la función $f(x) = xe^{-x}$.

Solución

3. Discuta, en función del parámetro a, el sistema de ecuaciones

(no es necesario resolverlo en ningún caso).

Solución

- 4. Considere las rectas $r: \left\{ \begin{array}{ll} x+y=0 \\ x-z=1 \end{array} \right.$ y $r: \left\{ \begin{array}{ll} x=1 \\ y=\lambda \\ z=\lambda \end{array} \right.$
 - a) Determine el plano Π que contiene a la recta r y corta perpendicularmente a la recta s.
 - b) Calcule el punto donde se cortan el plano Π y la recta s.

Opción A

 a) Diga, razonadamente, si la tercera columna de la matriz A siguiente es combinación lineal de las dos primeras columnas:

$$A = \left(\begin{array}{rrrr} 1 & 2 & -3 & 0 \\ 0 & 1 & -1 & 1 \\ -1 & 0 & 1 & -1 \end{array}\right).$$

b) Calcule el rango de la matriz A.

Solución

- 2. Sea r la recta que pasa por los puntos A = (1,0,0) y B = (1,-1,0), y sea s la recta que pasa por los puntos C = (0,1,1) y D = (1,0,-1).
 - a) Calcule el plano Π que contiene a s y es paralelo a r.
 - b) Calcule la distancia entre las rectas r y s.

Solución

3. Determine valores de los parámetros a y b para que la función $f(x) = a \cos^2 x + bx^3 + x^2$ tenga un punto de inflexión en x = 0.

Solución

4. Calcule, utilizando la fórmula de integración por partes, una primitiva F(x) de la función $f(x)=x^2\cdot lnx^2$ que cumpla F(1)=0.

Opción B

1. Discuta, en función del parámetro b, el sistema de ecuaciones

(no es necesario resolverlo en ningún caso).

Solución

- 2. a) Calcule las ecuaciones implicitas de la recta r que pasa por los puntos A=(1,0,0) y B(-1,0,-1).
 - b) De todos los planos que contienen a la recta r, obtenga uno cuya distancia al punto C = (0, -1, 0) sea igual a 1.

Solución

3. Calcule el límite

$$\lim_{x\to 0}\frac{e^x-e^{-x}-2x}{sen^2x}$$

Solución

- 4. a) Represente, de forma aproximada, la gráfica de la función $f(x) = xe^{x^2-1}$. Señale el recinto plano limitado por dicha gráfica, el eje OX, la recta x = -1 y la recta x = 1.
 - b) Calcule el área del recinto del apartado anterior.

Opción A

1. Discuta, en función del parámetro a, el sistema de ecuaciones

$$\left. \begin{array}{ccccccc}
 x & - & y & + & 2z & = & a \\
 -x & + & y & - & az & = & 1 \\
 x & + & ay & + & (1+a)z & = & -1
 \end{array} \right\}$$

(no hay que resolverlo en ningún caso).

Solución

2. Calcule todos los vectores de módulo 2 que son ortogonales a los vectores $\vec{u}=(1,-1,-1)\,$ y $\vec{v}=(-1,2,1).$

Solución

- 3. a) Determine el punto (x,y) de la parábola $y=x^2$ en el que la suma x+y alcanza su mínimo valor.
 - b) Explique por qué dicho mínimo es absoluto.

Solución

- 4. a) Calcule los puntos de corte de la recta 2y x = 3 y de la recta y = 1 con la rama hiperbólica xy = 2, x > 0.
 - b) Dibuje el recinto plano limitado por las tres curvas del apartado anterior.
 - c) Calcule el área de dicho recinto.

Opción B

1. Calcule la matriz inversa de la matriz $A = B^2 - 2 \cdot C$, siendo

$$B = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{array}\right), \qquad C = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 1 \end{array}\right).$$

Solución

2. Calcule la distancia del punto P=(3,-1,2) a la recta

$$r: \left\{ \begin{array}{l} x - y + z = 1 \\ x + z = 0 \end{array} \right..$$

Solución

3. Considere la función f(x) = |x| + |x - 2|.

- a) Exprese f(x) como una función definida a trozos.
- b) Dibuje la gráfica de f(x).
- c) Escriba el intervalo abierto de la recta real formado por los puntos en los que f(x) es derivable y se anula su derivada.

Solución

4. Calcule la siguiente integral de una función racional:

$$\int \frac{x^2+1}{x^2-1} \, dx.$$

Opción A

1. a) Calcule el siguiente límite (ln denota el logaritmo neperiano):

$$\lim_{x\to 0^+} x \cdot \ln x$$

- b) Estudie los extremos relativos, las asíntotas y el signo de la función $f(x) = x \cdot \ln x$ definida en el intervalo abierto $(0, +\infty)$.
- c) Utilizando los datos obtenidos en los apartados **a)** y **b)** represente de forma aproximada la gráfica de la función f(x) del apartado b)

Solución

- 2. a) Diga cuando una función F(x) es una primitiva de otra función f(x).
 - b) Haciendo el cambio de variable $t = \sqrt{x-1}$, calcule la primitiva de la función $f(x) = x \cdot \sqrt{x-1}$ cuya gráfica pasa por el punto (1,0) del plano.

Solución

3. Calcule los valores de a para los que el determinante de la matriz B es igual a 32, |B|=32, siendo $B=2\cdot A^2$ y

$$A = \left(\begin{array}{ccc} a & 1 & -a \\ 1 & 1 & 0 \\ 1 & 0 & 2 \end{array}\right)$$

Solución

4. Dados el plano Π de ecuación x+z=1 y los puntos A=(1,0,0) y B=(0,1,0), calcule los valores de c para los que el punto P=(0,0,c) cumple "área del triángulo ABP"="distancia de P a Π ".

Opción B

- 1. a) Estudie las asíntotas de la función $f(x) = e^{-x^2}$.
 - b) Calcule los extremos relativos y los puntos de inflexión de f(x).
 - c) Utilizando los datos obtenidos en los apartados **a)** y **b)**, haga la representación gráfica aproximada de la función f(x).

Solución

2. Calcule, utilizando la fórmula de integración por partes, una primitiva F(x) de la fucnión $f(x) = (x+1)^2 \cdot sen x$ que cumpla F(0) = 1.

Solución

3. ¿Existe alguna matriz $X=\left(\begin{array}{cc} x & y \\ z & x \end{array}\right)$ que cumpla

$$\left(\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right) \cdot X = X \cdot \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right)$$

y sea NO nula? Razone la respuesta.

Solución

- 4. Sea Π el plano determinado por los puntos $A=(1,0,0),\ B=(0,1,0)$ y P=(0,0,c), y sea la recta r: $\begin{cases} x-y=3\\ 2x-z=3 \end{cases}$
 - a) Obtenga la ecuación implícita de Π .
 - b) Determine los valores de c para los que r y Π son paralelos.
 - c) Determine los valores de c para los que r y Π son perpendiculares.

Opción A

a) Encuentre, razonadamente, un valor del parámetro a para el que sea compatible determinado el sistema de ecuaciones:

$$\begin{cases}
 ax + 2y + z = a+1 \\ (a+1)x - y - az = -1 \\ -x + y - az = 2a
 \end{cases}$$

b) Resuelva el sistema para el valor de a encontrado.

Solución

- 2. Sean en \mathbb{R}^3 los vectores $\vec{e} = (2,0,0), \vec{u} = (1,0,-1)$ y $\vec{v} = (-2,3,-2)$.
 - a) Calcule el producto vectorial $\vec{e} \times \vec{u}$.
 - b) Calcule el seno del ángulo θ que forman \vec{e} y $\vec{u}.$
 - c) Calcule el ángulo ϕ que forman \vec{u} y $\vec{v}.$

Solución

3. Estudie si la recta r de ecuación y = 4x-2 es tangente a la gráfica de la función $f(x) = x^3 + x^2 - x + 1$ en alguno de sus puntos.

Solución

- 4. a) Halle, utilizando la fórmula de integración por partes, una primitiva de la función $f(x) = 1 + \ln x$.
 - b) Calcule el área de la región plana limitada por la curva $y = \ln x$, la recta horizontal y = -1, y las rectas verticales x = 1 y x = e.

Opción B

1. Dadas las matrices

$$A = \left(\begin{array}{rrr} 1 & 0 & -1 \\ -1 & -1 & 1 \\ 0 & 1 & 1 \end{array}\right), \qquad I = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right),$$

pruebe que la matriz inversa de A es $A^{-1} = -A^2 + A + 2I$.

Solución

- 2. a) Calcule las ecuaciones implícitas de la recta r que pasa por el punto P=(1,-1,0) y es paralela a los planos $\Pi_1 \equiv x+y=2$ y $\Pi_2 \equiv x-y+z=1$.
 - b) Calcule también las ecuaciones paramétricas de r y un vector director de r.

Solución

- 3. a) Enuncie el teorema de Bolzano.
 - b) Demuestre que alguna de las raíces del polinomio $P(x) = x^4 8x 1$ es negativa.
 - c) Demuestre que P(x) tiene también alguna raíz positiva.

Solución

4. Calcule la siguiente integral de una función racional:

$$\int \frac{3x}{x^2 + x - 2} \, dx$$

Opción A

1. Dadas las matrices $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ y $B = \begin{pmatrix} 3 & x & y \\ -2 & 1 & -2 \\ 2 & x & y \end{pmatrix}$, estudie si existen

números reales x e y tales que la matriz B es la inversa de la matriz A.

Solución

2. En \mathbb{R}^3 , calcule la distancia del punto P=(1,-1,2) a la recta r que pasa por los puntos A=(0,-1,1) y B=(1,0,1).

Solución

- 3. a) Defina a trozos la función $f(x) = 2 x \cdot |x|$ y represente
la gráficamente.
 - b) Estudie la derivabilidad de f(x) en toda la recta real.
 - c) Calcule la función derivada f'(x) para los valores de x que exista.

Solución

4. Calcule el valor de la integral definida

$$\int_0^1 \left(\frac{2x}{x^2 + 1} \, + \, (2x - 1) \, e^{x^2 - x} \, + \, 2\pi \, \mathrm{sen}(2\pi x) \right) \, dx \, .$$

Opción B

1. a) Estudie para cuáles valores del parámetro m es compatible determinado el siguiente sistema de ecuaciones:

b) Resuelva el anterior sistema de ecuaciones para m=0.

Solución

2. Fijados los puntos A=(1,1,0) y B=(1,0,1), calcule todos los puntos de la forma $X=(0,\lambda,\mu)$ para los que el triángulo ABX es equilátero.

Solución

3. a) Estudie el dominio de definición, las asíntotas, los extremos relativos y los puntos de inflexión de la función

$$f(x) = \frac{x^3}{(x-1)^2} \, .$$

b) Represente la función f(x) anterior utilizando los datos obtenidos en el apartado a).

Solución

- 4. a) Dibuje el recinto plano limitado por la parábola $y=1-x^2$, el eje OX, la recta x=0 y la recta x=2.
 - b) Calcule el área de dicho recinto.

Opción A

1. a) Estudie cómo es el sistema de ecuaciones:

b) Resuelva el anterior sistema de ecuaciones.

Solución

- 2. Considere en \mathbb{R}^3 las rectas $r: \left\{ \begin{array}{l} x=0 \\ z=0 \end{array} \right.$, $s: \left\{ \begin{array}{l} x+y=1 \\ x-y=1 \end{array} \right.$
 - a) Obtenga un vector director de la recta s.
 - b) Obtenga el plano Π que contiene a r y es paralelo a s.
 - c) Obtenga el plano $\overline{\Pi}$ que contiene a r y es perpendicular a s.

Solución

- 3. a) Enuncie la condición que se debe cumplir para que una recta x=a sea asíntota vertical de una función f(x).
 - b) Calcule las asíntotas verticales y horizontales (en $-\infty$ y en $+\infty$) de la función

$$f(x) = \frac{x^2 + x - 1}{x^2 - x - 2}.$$

Solución

4. Calcule el área de la región plana limitada por la gráfica de la función $f(x) = \cos x$, el eje OX y las rectas x = 0, $x = 2\pi$.

Opción B

1. a) Calcule el determinante de la matriz

$$A = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & -1 & 0 \end{array}\right).$$

- b) Calcule la matriz inversa de A.
- c) Calcule el determinante de la matriz $B = \frac{1}{2}A^3$ sin obtener previamente B.

Solución

- 2. a) Dado el plano Π_1 de ecuación z=0, escriba las ecuaciones de dos planos Π_2 y Π_3 tales que los planos Π_1 , Π_2 y Π_3 se corten dos a dos pero no exista ningún punto común a los tres
 - b) Clasifique el sistema formado por las ecuaciones de los tres planos Π_1 , Π_2 y Π_3 .

Solución

- 3. a) Enuncie el teorema de Bolzano.
 - b) Aplique el teorema de Bolzano para probar que la ecuación $\cos x = x^2 1$ tiene soluciones positivas.
 - c) ¿Tiene la ecuación $\cos x = x^2 1$ alguna solución negativa? Razone la respuesta.

Solución

4. Calcule la siguiente suma de integrales definidas

$$\int_{1}^{2} \frac{-2}{x^{3}} dx + \int_{\pi}^{2\pi} \left(-\sin x \cdot e^{\sin x} + \cos^{2} x \cdot e^{\sin x} \right) dx,$$

cuyas integrales indefinidas asociadas son inmediatas.

JULIO 2014

Opción A

- 1. Considere las matrices $B = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 5 & 0 & -5 \\ 0 & 1 & 1 \\ -5 & -1 & 5 \end{pmatrix}.$
 - a) Calcule la matriz $A = 3B^2 C$.
 - b) Halle la inversa A^{-1} de la matriz A.

Solución

- 2. a) Calcule el valor del parámetro k para que la recta r: $\begin{cases} x+y+z=0\\ x-y-z=1 \end{cases}$ sea paralela al plano Π de ecuación kx+y+kz=1.
 - b) Para el valor de k obtenido en el apartado anterior, calcule la distancia de la recta r al plano Π .

Solución

- 3. a) Estudie el dominio de definición, las asíntotas, los extremos relativos y los puntos de inflexión de la función $(x+1)^3$
 - $f(x) = \frac{(x+1)^3}{x^2} \, .$
 - b) Represente la función f(x) anterior utilizando los datos obtenidos en el apartado a).

Solución

4. Calcule la siguiente integral definida de una función racional:

$$\int_{2}^{e+1} \frac{x-2}{x^2 - 3x + 2} \, dx.$$

JULIO 2014

Opción B

- 1. Considere el sistema compatible determinado de dos ecuaciones con dos incógnitas $x + y = 1 \\ x y = 3$ \Rightarrow cuya solución es el punto $P_0 = (2, -1)$ de \mathbb{R}^2 . Sea \mathcal{S}' el sistema que se obtiene al añadir a \mathcal{S} una tercera ecuación ax + by = c. Conteste razonadamente las siguientes preguntas:
 - a) ¿Puede ser S' compatible determinado?
 - b) ¿Puede ser S' incompatible?
 - c) ¿Puede ser S' compatible indeterminado?

Solución

- 2. En \mathbb{R}^3 , considere los cuatro puntos A=(0,1,1), B=(-2,0,-1), C=(-1,1,0) y D=(-2,2,1), y sea r la recta que pasa por C y por D.
 - a) Obtenga ecuaciones paramétricas de r.
 - b) Halle los puntos P de la recta r para los que el triángulo APB sea rectángulo en su vértice P.

Solución

- 3. a) Enuncie el teorema del valor medio de Lagrange.
 - b) Aplicando el anterior teorema a la función $f(x) = \operatorname{sen} x$, pruebe que cualesquiera que sean los números reales a < b se cumple la desigualdad $\operatorname{sen} b \operatorname{sen} a \le b a$.

Solución

- 4. a) Dibuje el recinto plano limitado por la parábola $y = x^2 2$ y la recta y = x.
 - b) Calcule el área de dicho recinto plano.

Índice general

1.	Aná	disis		1
	1.1.	Funcio	ones y continuidad	1
		1.1.1.	Septiembre 00 - Ejercicio 2 - Repertorio A	1
		1.1.2.	Junio 01 - Ejercicio 2 - Repertorio A	2
		1.1.3.	Septiembre 01 - Ejercicio 1 - Repertorio A	3
		1.1.4.	Junio 03 - Ejercicio 1 - Repertorio B	4
		1.1.5.	Septiembre 04 - Ejercicio 1 - Repertorio B	4
		1.1.6.	Junio 2010 - Ejercicio 1 - Repertorio A (Fase general)	5
		1.1.7.	Junio 2013 - Ejercicio 3 - Repertorio B	6
		1.1.8.	Junio 2014 - Ejercicio 3 - Repertorio B	6
	1.2.	Deriva	da y sus aplicaciones	8
		1.2.1.	Junio 00 - Ejercicio 4 - Repertorio A	8
		1.2.2.	Junio 00 - Ejercicio 1 - Repertorio B	8
		1.2.3.	Septiembre 00 - Ejercicio 1 - Repertorio B	9
		1.2.4.	Junio 01 - Ejercicio 3 - Repertorio B	9
		1.2.5.	Septiembre 01 - Ejercicio 3 - Repertorio B	10
		1.2.6.	Junio 02 - Ejercicio 1 - Repertorio A	11
		1.2.7.	Junio 02 - Ejercicio 1 - Repertorio B	11
		1.2.8.	Septiembre 02 - Ejercicio 1 - Repertorio A	12
		1.2.9.	Septiembre 02 - Ejercicio 1 - Repertorio B	13
		1.2.10.	Junio 03 - Ejercicio 3 - Repertorio A	13
		1.2.11.	Junio 03 - Ejercicio 3 - Repertorio B	14
		1.2.12.	. Septiembre 03 - Ejercicio 2 - Repertorio A	15
		1.2.13.	. Septiembre 03 - Ejercicio 4 - Repertorio B	16
		1.2.14.	Junio 04 - Ejercicio 3 - Repertorio A	16
		1.2.15.	Junio 04 - Ejercicio 4 - Repertorio B	17
		1.2.16.	Septiembre 04 - Ejercicio 4 - Repertorio A	18
		1.2.17.	Septiembre 04 - Ejercicio 4 - Repertorio B	19
		1.2.18.	Junio 05 - Ejercicio 3 - Repertorio A	19
		1.2.19.	Junio 05 - Ejercicio 3 - Repertorio B	20
		1.2.20.	. Septiembre 05 - Ejercicio 1 - Repertorio A	20
		1.2.21.	. Septiembre 05 - Ejercicio 2 - Repertorio B	21
		1.2.22.	Junio 06 - Ejercicio 1 - Repertorio A	21
		1.2.23.	Junio 06 - Ejercicio 1 - Repertorio B	21
		1.2.24.	. Septiembre 06 - Ejercicio 3 - Repertorio A	21
		1.2.25.	Septiembre 06 - Ejercicio 3 - Repertorio B	22
		1.2.26.	Junio 07 - Ejercicio 1 - Repertorio A	23
		1.2.27.	Junio 07 - Ejercicio 1 - Repertorio B	23

LXXIV ÍNDICE GENERAL

	1.2.28.	Septiembre 07 - Ejercicio 1 - Repertorio A	24
	1.2.29.	Septiembre 07 - Ejercicio 2 - Repertorio B	24
	1.2.30.	Junio 08 - Ejercicio 1 - Repertorio A	25
		Junio 08 - Ejercicio 1 - Repertorio B	27
	1.2.32.	Septiembre 08 - Ejercicio 1 - Repertorio A	27
		Septiembre 08 - Ejercicio 1 - Repertorio B	28
	1.2.34.	Junio 09 - Ejercicio 3 - Repertorio A	28
	1.2.35.	Junio 09 - Ejercicio 1 - Repertorio B	29
	1.2.36.	Septiembre 09 - Ejercicio 3 - Repertorio A	29
		Septiembre 09 - Ejercicio 1 - Repertorio B	30
	1.2.38.	Junio 10 - Ejercicio 1 - Repertorio B (Fase general)	30
		Junio 10 - Ejercicio 1 - Repertorio A (Fase específica)	31
		Junio 10 - Ejercicio 1 - Repertorio B (Fase específica)	31
		Septiembre 10 - Ejercicio 1 - Repertorio A (Fase general)	32
		Septiembre 10 - Ejercicio 1 - Repertorio B (Fase general)	32
		Septiembre 10 - Ejercicio 1 - Repertorio B (Fase específica)	33
		Junio 11 - Ejercicio 1 - Repertorio A	34
		Junio 11 - Ejercicio 2 - Repertorio B	35
		Septiembre 11 - Ejercicio 3 - Repertorio A	36
		Septiembre 11 - Ejercicio 3 - Repertorio B	36
		Junio 12 - Ejercicio 3 - Repertorio A	37
		Junio 12 - Ejercicio 3 - Repertorio B	37
		Septiembre 12 - Ejercicio 1 - Repertorio A	38
		Septiembre 12 - Ejercicio 1 - Repertorio B	40
		Junio 13 - Ejercicio 3 - Repertorio A	41
		Septiembre 13 - Ejercicio 3 - Repertorio A	42
		Septiembre 13 - Ejercicio 3 - Repertorio B	43
		Junio 14 - Ejercicio 3 - Repertorio A	45
		Julio 14 - Ejercicio 3 - Repertorio A	46
		Julio 14 - Ejercicio 3 - Repertorio B	47
1.3.		al. Cálculo de áreas y volúmenes	49
1.0.	1.3.1.	Junio 00 - Ejercicio 1 - Repertorio A	49
	1.3.2.	Junio 00 - Ejercicio 4 - Repertorio B	49
	1.3.3.	Septiembre 00 - Ejercicio 3 - Repertorio A	51
	1.3.4.	Septiembre 00 - Ejercicio 3 - Repertorio B	51
	1.3.5.	Junio 01 - Ejercicio 4 - Repertorio A	52
	1.3.6.	Junio 01 - Ejercicio 2 - Repertorio B	52
	1.3.7.	Septiembre 01 - Ejercicio 4 - Repertorio A	53
	1.3.8.	Septiembre 01 - Ejercicio 1 - Repertorio B	54
	1.3.9.	Junio 02 - Ejercicio 3 - Repertorio A	54
		Junio 02 - Ejercicio 3 - Repertorio B	55
		Septiembre 02 - Ejercicio 2 - Repertorio A	56
		Septiembre 02 - Ejercicio 4 - Repertorio B	57
		Junio 03 - Ejercicio 2 - Repertorio A	57
		Junio 03 - Ejercicio 2 - Repertorio B	58
		Septiembre 03 - Ejercicio 3 - Repertorio A	58
		Septiembre 03 - Ejercicio 3 - Repertorio B	59
		Junio 04 - Ejercicio 1 - Repertorio A	59 60

ÍNDICE GENERAL LXXV

1.3.18. Junio 04 - Ejercicio 3 - Repertorio B	60
	61
	62
	62
	63
	64
·	64
· ·	65
•	66
·	66
1.3.28. Septiembre 06 - Ejercicio 4 - Repertorio B	67
1.3.29. Junio 07 - Ejercicio 2 - Repertorio A	67
1.3.30. Junio 07 - Ejercicio 2 - Repertorio B	68
1.3.31. Septiembre 07 - Ejercicio 2 - Repertorio A	69
1.3.32. Septiembre 07 - Ejercicio 1 - Repertorio B	70
1.3.33. Junio 08 - Ejercicio 2 - Repertorio A	70
1.3.34. Junio 08 - Ejercicio 2 - Repertorio B	70
	72
	72
	72
	73
* -	74
·	77
	78
	79
	79
1.3.44. Junio 10 - Ejercicio 2 - Repertorio B (Fase específica)	80
1.3.45. Septiembre 10 - Ejercicio 2 - Repertorio A (Fase general)	81
1.3.46. Septiembre 10 - Ejercicio 2 - Repertorio B (Fase general)	82
$1.3.47.$ Septiembre 10 - Ejercicio 1 - Repertorio A (Fase específica) \ldots	83
1.3.48. Septiembre 10 - Ejercicio 2 - Repertorio A (Fase específica)	83
1.3.49. Septiembre 10 - Ejercicio 2 - Repertorio B (Fase específica)	84
1.3.50. Junio 11 - Ejercicio 2 - Repertorio A	85
1.3.51. Junio 11 - Ejercicio 1 - Repertorio B	86
	87
	87
	89
	90
	91
·	92
* -	92
•	93
1	94
	94
3	95
1.3.63. Junio 14 - Ejercicio 4 - Repertorio B	96
1.3.64. Julio 14 - Ejercicio 4 - Repertorio A	96
1.3.65. Julio 14 - Ejercicio 4 - Repertorio B	97

LXXVI ÍNDICE GENERAL

2 .	Álg	ebra		99
	2.1.	Matrio	ces y determinantes	. 99
		2.1.1.	Septiembre 00 - Ejercicio 1 - Repertorio A	. 99
		2.1.2.	Septiembre 01 - Ejercicio 3 - Repertorio A	. 99
		2.1.3.	Septiembre 01 - Ejercicio 2 - Repertorio B	. 100
		2.1.4.	Junio 02 - Ejercicio 2 - Repertorio B	. 100
		2.1.5.	Junio 03 - Ejercicio 4 - Repertorio B	. 101
		2.1.6.	Septiembre 03 - Ejercicio 1 - Repertorio B	. 101
		2.1.7.	Junio 04 - Ejercicio 4 - Repertorio A	. 102
		2.1.8.	Junio 04 - Ejercicio 2 - Repertorio B	. 102
		2.1.9.	Septiembre 04 - Ejercicio 1 - Repertorio A	. 103
		2.1.10.	. Septiembre 04 - Ejercicio 2 - Repertorio B	. 103
		2.1.11.	Junio 06 - Ejercicio 4 - Repertorio A	. 104
		2.1.12.	Septiembre 06 - Ejercicio 2 - Repertorio B	. 104
		2.1.13.	Junio 07 - Ejercicio 3 - Repertorio A	. 104
		2.1.14.	Septiembre 07 - Ejercicio 3 - Repertorio A	. 105
			Septiembre 07 - Ejercicio 3 - Repertorio B	
			Junio 08 - Ejercicio 3 - Repertorio B	
			Septiembre 08 - Ejercicio 3 - Repertorio A	
			Junio 09 - Ejercicio 1 - Repertorio A	
			Junio 09 - Ejercicio 3 - Repertorio B	
			Septiembre 09 - Ejercicio 1 - Repertorio A	
			Septiembre 09 - Ejercicio 3 - Repertorio B	
			Junio 10 - Ejercicio 3 - Repertorio B (Fase general)	
			Junio 10 - Ejercicio 3 - Repertorio A (Fase específica)	
			Septiembre 10 - Ejercicio 3 - Repertorio B (Fase general)	
			Septiembre 10 - Ejercicio 3 - Repertorio B (Fase específica)	
			Junio 11 - Ejercicio 3 - Repertorio A	
		2.1.27.	Septiembre 11 - Ejercicio 1 - Repertorio A	. 115
			Junio 12 - Ejercicio 1 - Repertorio B	
			. Septiembre 12 - Ejercicio 3 - Repertorio A	
			Septiembre 12 - Ejercicio 3 - Repertorio B	
			Junio 13 - Ejercicio 1 - Repertorio B	
			Septiembre 13 - Ejercicio 1 - Repertorio A	
		2.1.33.	Junio 14 - Ejercicio 1 - Repertorio B	. 119
			Julio 14 - Ejercicio 1 - Repertorio A	
	2.2.	Sistem	nas de ecuaciones	. 121
		2.2.1.	Junio 00 - Ejercicio 2 - Repertorio A	. 121
		2.2.2.	Junio 00 - Ejercicio 3 - Repertorio B	. 121
		2.2.3.	Septiembre 00 - Ejercicio 2 - Repertorio B	. 121
		2.2.4.	Junio 01 - Ejercicio 1 - Repertorio B	. 122
		2.2.5.	Junio 02 - Ejercicio 2 - Repertorio A	. 123
		2.2.6.	Septiembre 02 - Ejercicio 3 - Repertorio A	
		2.2.7.	Septiembre 02 - Ejercicio 2 - Repertorio B	
		2.2.8.	Junio 03 - Ejercicio 1 - Repertorio A	
		2.2.9.	Septiembre 03 - Ejercicio 1 - Repertorio A	
			Junio 05 - Ejercicio 1 - Repertorio A	
			Junio 05 - Ejercicio 1 - Repertorio B	

ÍNDICE GENERAL LXXVII

		2.2.12.	Septiembre 05 - Ejercicio 2 - Repertorio A	129
		2.2.13.	Septiembre 05 - Ejercicio 1 - Repertorio B	129
		2.2.14.	Junio 06 - Ejercicio 4 - Repertorio B	130
		2.2.15.	Septiembre 06 - Ejercicio 1 - Repertorio A	131
		2.2.16.	Junio 07 - Ejercicio 3 - Repertorio B	132
		2.2.17.	Junio 08 - Ejercicio 3 - Repertorio A	133
		2.2.18.	Septiembre 08 - Ejercicio 3 - Repertorio B	134
		2.2.19.	Junio 10 - Ejercicio 3 - Repertorio A (Fase general)	135
		2.2.20.	Junio 10 - Ejercicio 3 - Repertorio B (Fase específica) $\ \ldots \ \ldots \ \ldots$	136
		2.2.21.	Septiembre 10 - Ejercicio 3 - Repertorio A (Fase general) $\ \ldots \ \ldots \ \ldots$	137
		2.2.22.	Septiembre 10 - Ejercicio 3 - Repertorio A (Fase específica) $\ \ldots \ \ldots \ \ldots$	138
		2.2.23.	Junio 11 - Ejercicio 3 - Repertorio B	139
		2.2.24.	Septiembre 11 - Ejercicio 1 - Repertorio B	140
		2.2.25.	Junio 12 - Ejercicio 1 - Repertorio A	141
		2.2.26.	Junio 13 - Ejercicio 1 - Repertorio A	142
		2.2.27.	Septiembre 13 - Ejercicio 1 - Repertorio B	143
		2.2.28.	Junio 14 - Ejercicio 1 - Repertorio A	144
		2.2.29.	Julio 14 - Ejercicio 1 - Repertorio B	145
	~			
3.		metría		147
	3.1.		res, puntos, rectas y planos en el espacio	
		3.1.1.	Septiembre 00 - Ejercicio 4 - Repertorio A	
		3.1.2.	Septiembre 00 - Ejercicio 4 - Repertorio B	
		3.1.3.	Junio 01 - Ejercicio 3 - Repertorio A	
		3.1.4.	Junio 01 - Ejercicio 4 - Repertorio B	
		3.1.5.	Septiembre 01 - Ejercicio 2 - Repertorio A	
		3.1.6.	Septiembre 01 - Ejercicio 4 - Repertorio B	
		3.1.7.	Junio 02 - Ejercicio 4 - Repertorio A	
		3.1.8.	Junio 02 - Ejercicio 4 - Repertorio B	
		3.1.9.	Septiembre 02 - Ejercicio 4 - Repertorio A	
			Septiembre 03 - Ejercicio 4 - Repertorio A	153
			Septiembre 03 - Ejercicio 2 - Repertorio B	
			Junio 04 - Ejercicio 1 - Repertorio B	
			Septiembre 04 - Ejercicio 2 - Repertorio A	
			Junio 05 - Ejercicio 4 - Repertorio B	
			Septiembre 05 - Ejercicio 3 - Repertorio A	
			Septiembre 05 - Ejercicio 3 - Repertorio B	
			Junio 06 - Ejercicio 3 - Repertorio A	
			Junio 06 - Ejercicio 3 - Repertorio B	
			Septiembre 06 - Ejercicio 1 - Repertorio B	
			Junio 07 - Ejercicio 4 - Repertorio A	
			Junio 07 - Ejercicio 4 - Repertorio B	
			Junio 08 - Ejercicio 4 - Repertorio A	
			Junio 08 - Ejercicio 4 - Repertorio B	
			Septiembre 08 - Ejercicio 4 - Repertorio A	
			Septiembre 08 - Ejercicio 4 - Repertorio B	
			Junio 09 - Ejercicio 2 - Repertorio A	
			Junio 09 - Ejercicio 4 - Repertorio B	
		3.1.28.	Septiembre 09 - Ejercicio 2 - Repertorio A	164

LXXVIII ÍNDICE GENERAL

	3.1.29.	Junio 10 - Ejercicio 4 - Repertorio B (Fase general)	65
	3.1.30.	Junio 10 - Ejercicio 4 - Repertorio B (Fase específica) $\ \ldots \ \ldots \ \ldots \ 1$	65
	3.1.31.	Septiembre 10 - Ejercicio 4 - Repertorio B (Fase general)	66
	3.1.32.	Septiembre 10 - Ejercicio 4 - Repertorio A (Fase específica)	66
	3.1.33.	Septiembre 10 - Ejercicio 4 - Repertorio B (Fase específica)	67
	3.1.34.	Junio 11 - Ejercicio 4 - Repertorio A	68
	3.1.35.	Junio 11 - Ejercicio 4 - Repertorio B	69
	3.1.36.	Junio 12 - Ejercicio 2 - Repertorio A	69
	3.1.37.	Septiembre 12 - Ejercicio 4 - Repertorio B	70
	3.1.38.	Junio 2013 - Ejercicio 2 - Repertorio A	71
	3.1.39.	Junio 2013 - Ejercicio 2 - Repertorio B	72
	3.1.40.	Junio 2014 - Ejercicio 2 - Repertorio A	72
	3.1.41.	Junio 2014 - Ejercicio 2 - Repertorio B	73
	3.1.42.	Julio 2014 - Ejercicio 2 - Repertorio B	74
3.2.	Proble	mas métricos	75
	3.2.1.	Junio 00 - Ejercicio 3 - Repertorio A	75
	3.2.2.	Junio 00 - Ejercicio 2 - Repertorio B	75
	3.2.3.	Junio 01 - Ejercicio 1 - Repertorio A	75
	3.2.4.	Septiembre 02 - Ejercicio 3 - Repertorio B	76
	3.2.5.	Junio 03 - Ejercicio 4 - Repertorio A	77
	3.2.6.	Junio 04 - Ejercicio 2 - Repertorio A	77
	3.2.7.	Junio 05 - Ejercicio 4 - Repertorio A	78
	3.2.8.	Septiembre 06 - Ejercicio 2 - Repertorio A	78
	3.2.9.	Septiembre 07 - Ejercicio 4 - Repertorio A	79
	3.2.10.	Septiembre 07 - Ejercicio 4 - Repertorio B	79
	3.2.11.	Septiembre 09 - Ejercicio 4 - Repertorio B	80
	3.2.12.	Junio 10 - Ejercicio 4 - Repertorio A (Fase general)	.80
	3.2.13.	Junio 10 - Ejercicio 4 - Repertorio A (Fase específica)	81
	3.2.14.	Septiembre 10 - Ejercicio 4 - Repertorio A (Fase general)	81
	3.2.15.	Septiembre 11 - Ejercicio 2 - Repertorio A	82
	3.2.16.	Septiembre 11 - Ejercicio 2 - Repertorio B	83
	3.2.17.	Junio 12 - Ejercicio 2 - Repertorio B	84
	3.2.18.	Septiembre 12 - Ejercicio 4 - Repertorio A	84
	3.2.19.	Septiembre 13 - Ejercicio 2 - Repertorio A	.85
	3.2.20.	Septiembre 13 - Ejercicio 2 - Repertorio B	86
	3.2.21.	Julio 14 - Ejercicio 2 - Repertorio A	87

Capítulo 1

Análisis

1.1. Funciones y continuidad

1.1.1. Representar gráficamente la función

$$f(x) = 2x^3 - \frac{x^2}{2} - x + \frac{5}{27}$$

¿Cuántas raíces reales positivas tiene este polinomio?

(Septiembre 00)

- Solución:

Para poder representarla vamos a estudiar su derivada. Tenemos que

$$f'(x) = 6x^2 - x - 1$$

Igualando a cero resulta:

$$6x^{2} - x - 1 = 0 \Longrightarrow x = \frac{1 \pm \sqrt{1 + 24}}{12} = \frac{1 \pm 5}{12} = \begin{cases} \frac{6}{12} = \frac{1}{2} \\ -\frac{4}{12} = -\frac{1}{3} \end{cases}$$

Construimos una tabla para estudiar el signo de la derivada y conocer así donde crece y donde decrece y sus máximos y mínimos.

$$\begin{array}{c|c|c} & \left(-\infty, -\frac{1}{3}\right) & \left(-\frac{1}{3}, \frac{1}{2}\right) & \left(\frac{1}{2}, +\infty\right) \\ \hline 6x^2 - x - 1 & + & - & + \\ \nearrow & \searrow & \nearrow \end{array}$$

1

En consecuencia:

- Crece
$$\longrightarrow \left(-\infty, -\frac{1}{3}\right) \cup \left(\frac{1}{2}, +\infty\right)$$

- Decrece
$$\longrightarrow \left(-\frac{1}{3}, \frac{1}{2}\right)$$

- Máximo
$$\longrightarrow \left(-\frac{1}{3}, \frac{7}{18}\right)$$

- Mínimo
$$\longrightarrow \left(\frac{1}{2}, -\frac{41}{216}\right)$$

También es obvio que $\lim_{x \to -\infty} f(x) = -\infty$ y que $\lim_{x \to +\infty} f(x) = +\infty$

Podemos hacer una tabla de valores para afinar la representación, pero aquí no la pondremos. La gráfica resultante podemos verla en la figura 1.1

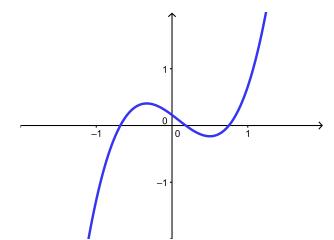


Figura 1.1: Representación gráfica de la función $f(x) = 2x^3 - \frac{x^2}{2} - x + \frac{5}{27}$

Para ver la última parte del ejercicio usaremos el Teorema de Bolzano. Sabemos que como mucho tendrá tres raices reales (pues es un polinomio de grado 3) y por los datos recabados con anterioridad y mirando la gráfica las raices estarán en los intervalos $\left(-\infty,-\frac{1}{3}\right)$, $\left(-\frac{1}{3},\frac{1}{2}\right)$ y $\left(\frac{1}{2},+\infty\right)$. Es evidente que hay una positiva garantizada (la contenida en el último intervalo) y otra negativa (en el primero). Veamos que ocurre con la otra. Nos basaremos en el teorema de Bolzano para ir tanteando y comprobando donde está.

Tenemos que $f(0) = \frac{5}{27} > 0$ y $f\left(\frac{1}{2}\right) = -\frac{41}{216} < 0$. Por tanto la tercera raiz se encuentra en el intervalo $\left(0, \frac{1}{2}\right)$ y es positiva.

1.1.2. Representa la gráfica del polinomio

$$f(x) = 2x^3 + 3x^2 - 0'2$$

¿Cuántas raíces reales negativas tiene este polinomio? ¿y cuántas positivas?

(Junio 01)

- Solución:

Vamos a hacer un breve estudio del polinomio para su representación:

- $Dom f = \mathbb{R} \longrightarrow \text{Como en todos los polinomios}.$
- Simetría \longrightarrow No tiene.
- Continuidad \longrightarrow Continua en todo \mathbb{R} .
- Asíntotas \longrightarrow No tiene, como le ocurre a todos los polinomios.
- Corte con los ejes:
 - Eje X: Al ser un polinomio de grado 3 puede cortar al Eje X en un máximo de tres puntos. Vamos a orientarnos donde estarán usando el teorema de Bolzano.

$$f(-2) = -16 + 12 - 0'2 < 0$$

$$f(-1) = -2 + 3 - 0'2 > 0$$

$$f(0) = -0'2 < 0$$

$$f(1) = 2 + 3 - 0'2 > 0$$

Por tanto corta en un punto entre (-2, -1), en otro entre (-1, 0) y en otro entre (0, 1).

- Eje Y: (0, -0'2)
- Vamos a estudiar la derivada:

$$f'(x) = 6x^2 + 6x$$

Esta derivada se anula en x = 0 y en x = -1. Por tanto:

De aquí deducimos que:

- Crece $\longrightarrow (-\infty, -1) \cup (0, +\infty)$
- Decrece $\longrightarrow (-1,0)$
- Máximo $\longrightarrow (-1, 0'8)$
- Mínimo $\longrightarrow (0, -0'2)$

Su representación gráfica podemos verla en la figura 1.2

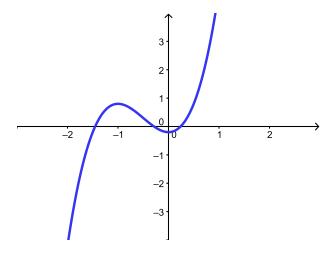


Figura 1.2: Representación gráfica de la función $f(x) = 2x^3 + 3x^2 - 0'2$

La respuesta a las preguntas finales ya la hemos hecho cuando realizamos el estudio del corte con el Eje X, es decir, hay dos raices negativas y una positiva.

1.1.3. Enunciar el teorema de Bolzano. Calcular, con un error menor que una décima, una raíz positiva del polinomio $x^3 + x - 1$

(Septiembre 01)

- Solución:

La parte de teoría podemos encontrarla en cualquier libro.

Para buscar la raiz positiva que nos piden vamos a tantear utilizando el teorema de Bolzano. Nuestra función es $f(x) = x^3 + x - 1$ y es fácil observar que la función es continua en todo \mathbb{R} , y por tanto, lo es en cualquier intervalo que cojamos. También se cumple que:

$$f(0) = -1 \text{ y } f(1) = 1$$

Vamos a comenzar a tantear para "acorralar" la raiz.

- $f(0'5) = -0'375 < 0 \Longrightarrow$ La raiz está en el intervalo (0'5, 1).
- $f(0'7) = 0'043 > 0 \Longrightarrow$ La raiz está en el intervalo (0'5, 0'7).
- $f(0'6) = -0'184 < 0 \Longrightarrow$ La raiz está en el intervalo (0'6, 0'7).

La raiz, con un error menor que 0'1 está contenida en el intervalo (0'6, 0'7). Valdría cualquiera, pero parece que por el valor que toma la función en él podíamos tomar 0'7.

1.1.4. Enunciar el teorema de Bolzano y determinar si el polinomio $x^4 - 4x^2 - 1$ tiene alguna raiz real negativa.

(Junio 03)

- Solución:

El teorema podemos encontrarlo en cualquier libro.

Vamos a aplicar el mismo para comprobar que la función tiene, al menos, una raiz negativa.

Este hecho es evidente, pues basta con comprobar que la función toma valores de distinto signo en -5 y 0.

- -f(-5) = 625 100 1 > 0.
- -f(0) = -1 < 0.

Luego, según el teorema de Bolzano, como f es continua en [-5,0] y toma valores de signo contrario en -5 y 0, entonces existe un $c \in (-5,0)$ en el que f(c) = 0.

1.1.5. Enunciar el teorema de Bolzano y usarlo para probar que la ecuación x = cosx tiene solución positiva.

(Septiembre 04)

- Solución:

El teorema de Bolzano puede encontrarse en cualquier libro.

Pasamos a la segunda parte.

Consideramos la función $f(x) = \cos x - x$. Evidentemente su dominio es todo \mathbb{R} y es también continua en todo su dominio. Además:

- f(0) = 1 0 = 1 > 0
- f(1) = cos1 1 = 0'999847 1 < 0

Por tanto, esta función cumple las hipótesis del teorema de Bolzano, y según el mismo, tiene que tener una raiz en el intervalo (0,1), y por tanto positiva.

Si no queremos apurar tanto podemos tomar $x=2,3,\cdots$ en lugar de x=1, pues como el coseno está comprendido entre -1 y 1, al restarle la x elegida dará negativo.

1.1.6.

- a) Enuncie el teorema de Bolzano.
- b) Aplique el teorema de Bolzano para probar que la ecuación $e^x = -2x^2 + 2$ tiene soluciones. (Puede ser útil dibujar las gráficas de las funciones $f(x) = e^x$ y $g(x) = -2x^2 + 2$.)
- c) Determine un intervalo de longitud 1 donde se encuentre alguna solución de la ecuación $e^x = -2x^2 + 2$.

(Junio 10 - Fase general)

- Solución:

- a) La respuesta a este apartado podemos encontrarla en cualquier libro.
- b) Vamos a considerar para resolver este apartado la función $h(x) = e^x + 2x^2 2$. Representaremos las dos funciones como nos aconsejan. Omitimos los calculos a realizar y el resultado es:

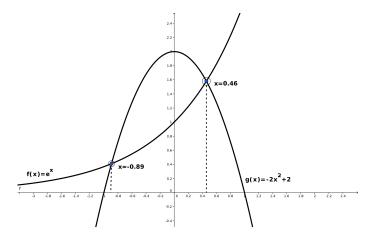


Figura 1.3: Representación gráfica de las funciones e^x y $2x^2 - 2$

Hay que encontrar dos valores en los que tenga signo contrario la función h construida anteriormente. No es mala idea utilizar el 0 como valor siempre que sea posible; pero además en este caso es aconsejable a la vista de las gráficas. El otro valor puede ser el 1.

Tomados estos valores tenemos que es obvio que la función es continua en [0,1] y además:

- $h(0) = e^0 2 = -1 < 0$
- h(1) = e + 2 2 = e > 0

En consecuencia, en virtud al teorema de Bolzano existe un valor en el intervalo (0,1) en el que la función h(x) tiene un cero, es decir, es solución de la ecuación planteada.

c) El intervalo anterior vale para este apartado.

1.1.7.

- a) Enuncie el teorema de Bolzano.
- b) Demuestre que alguna de las raíces del polinomio $P(x) = x^4 8x 1$ es negativa.
- c) Demuestre que P(x) tiene también alguna raíz positiva.

(Junio 13)

- Solución:

- a) El teorema podemos encontrarlo en cualquier libro.
- b) Vamos a ver cuanto vale P(0) y luego tendremos que buscar un valor negativo de x en el que la función tome un valor de distinto signo que en P(0).

$$P(0) = -1 < 0$$

Basta con coger x = -1 para encontrar el primer intervalo.

$$P(-1) = 1 + 8 - 1 = 8 > 0$$

Luego, según el teorema de Bolzano, habrá una raíz en el intervalo (-1,0) y por tanto negativa.

c) Razonaremos de forma similar para la raíz positiva. Esta vez nos vale x=3.

$$P(3) = 81 - 24 - 1 = 56 > 0$$

Por tanto hay una raíz en el intervalo (0,3) y por tanto positiva.

1.1.8.

- a) Enuncie el teorema de Bolzano.
- b) Aplique el teorema de Bolzano para probar que la ecuación $\cos x = x^2 1$ tiene soluciones positivas.
- c) ¿Tiene la ecuación $\cos x = x^2 1$ alguna solución negativa? Razone la respuesta.

(Junio 14)

- Solución:

El primer apartado es un resultado teórico que puede encontrarse en cualquier libro y que aquí omitimos.

Vamos a resolver el segundo apartado. Para ello vamos a considerar la función $f(x) = \cos x - x^2 + 1$. Las raíces de la ecuación que nos piden coincidirán con los valores donde se anula esta función.

Se trata, obviamente de una función continua. Veamos que cumple los demás requisitos del teorema de Bolzano, es decir, vamos a ver si podemos encontrar un intervalo positivo en los que la función tome valores de signo distinto (cuando nos piden valores positivos o negativos es una buena idea tomar como uno de los valores el cero).

En nuestro caso tenemos:

$$\left. \begin{array}{l} f(0) = \cos \, 0 - 0^2 + 1 = 1 - 0 + 1 = 2 > 0 \\ f(2\pi) = \cos \, 2\pi - 4\pi^2 + 1 = 2 - 4\pi^2 < 0 \end{array} \right\} \Longrightarrow \exists \, c \in (0, 2\pi) \text{ donde } f(c) = 0$$

Para responder a tercer apartado tenemos varias opciones. Una de ellas sería darnos cuenta que la función f(x) es par, luego si tiene un valor c positivo donde hay una raíz, el valor opuesto a éste también anulará la función.

También podemos hacer como anteriormente.

$$f(0) = \cos 0 - 0^2 + 1 = 1 - 0 + 1 = 2 > 0$$

$$f(-2\pi) = \cos (-2\pi) - 4\pi^2 + 1 = 2 - 4\pi^2 < 0$$

$$\Rightarrow \exists c' \in (-2\pi, 0) \text{ donde } f(c) = 0$$

1.2. Derivada y sus aplicaciones

1.2.1. Determinar el dominio de definición de la función $f(x) = x - \ln(x^2 - 1)$ y representar su gráfica, calculando los intervalos de crecimiento y los extremos (máximos y mínimos relativos).

(Junio 00)

- Solución:

La función no existirá en los puntos en los que $x^2 - 1 \le 0$. Vamos a ver donde ocurre. Para ello vamos a hacer una tabla con los puntos de corte.

$$x^2 - 1 = 0 \Longrightarrow x = \pm 1$$

La tabla queda:

Luego el dominio de la función es $Dom f = (-\infty, -1) \bigcup (1, +\infty)$.

Vamos a estudiar su derivada:

$$f'(x) = 1 - \frac{2x}{x^2 - 1} = \frac{x^2 - 1 - 2x}{x^2 - 1} = \frac{x^2 - 2x - 1}{x^2 - 1}$$

Vamos a estudiar su signo. Para ello vamos a igualar la derivada a cero y tendremos en cuenta el dominio antes calculado y construiremos una tabla.

$$\frac{x^2 - 2x - 1}{x^2 - 1} = 0 \Longrightarrow x = \frac{2 \pm \sqrt{4 + 4}}{2} = \frac{2 \pm \sqrt{8}}{2} = 1 \pm \sqrt{2}$$

La tabla quedaría:

Luego la función:

- Crece $\longrightarrow (-\infty, -1) \cup (1 + \sqrt{2}, +\infty)$
- Decrece $\longrightarrow (1, 1 + \sqrt{2})$

Hay un mínimo en $(1 + \sqrt{2}, 0.84)$. Para aproximar más es bueno hacer una tabla de valores, que aquí no haremos. También es evidente que en x = 1 y en x = -1 hay asíntotas verticales, pues las tiene el logaritmo.

- $x = 1 \longrightarrow \lim_{x \to 1^+} f(x) = +\infty$ (Por la izquierda no existe).
- $x = -1 \longrightarrow \lim_{x \to -1^-} f(x) = +\infty$ (Por la derecha no existe).

La representación gráfica podemos verla en la figura 1.4.

1.2.2. Definir el concepto de derivada de una función f(x) en un punto x = a, y explicar su relación con los máximos relativos de la función.

(Junio 00)

- Solución:

La solución de este ejercicio puede verse en cualquier libro.

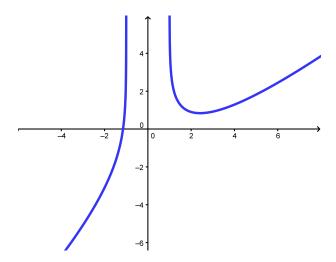


Figura 1.4: Representación gráfica de la función $f(x) = x - ln(x^2 - 1)$

1.2.3. Calcular la derivada en el punto x = 1 de la función $f(x) = x^{-1/2} lnx$.

(Septiembre 00)

- Solución:

Vamos a calcular la derivada y después sustituiremos x = 1 en la función obtenida.

$$f'(x) = -\frac{1}{2}x^{-3/2}lnx + x^{-1/2}\frac{1}{x}$$

Sustituyendo obtenemos:

$$f'(1) = -\frac{1}{2} \cdot 1^{-3/2} \ln 1 + 1^{-1/2} \cdot 1 = 1$$

1.2.4. Dadas las funciones $f(x) = x^2 + \pi$ y g(x) = senx + cosx, calcula la derivada en x = 0 de las funciones f(g(x)) y g(f(x)).

(Junio 01)

- Solución:

Tenemos dos formas de resolver este ejercicio. La primera consiste en calcular las composiciones requeridas y posteriormente derivar, y la segunda en derivar aplicando la regla de la cadena. Veamos la primera en ambas funciones:

$$f(g(x)) = (senx + cosx)^2 + \pi = \underbrace{sen^2x + cos^2x}_{1} + 2senxcosx + \pi = sen2x + \pi + 1$$

Si derivamos esta expresión tendremos:

$$[(fog)]'(x) = [f(g(x))]' = 2cos2x$$

Sustituyendo en x = 0 resulta:

$$\left[\left(fog\right) \right] ^{\prime }\left(0\right) =2$$

Por otro lado, la otra composición nos daría:

$$q(f(x)) = sen(x^2 + \pi) + cos(x^2 + \pi)$$

Derivando obtenemos:

$$[(gof)]'(x) = 2xcos(x^2 + \pi) - 2xsen(x^2 + \pi)$$

Subtituyendo en x = 0 el resultado obtenido es:

$$\left[\left(gof\right) \right] ^{\prime }\left(0\right) =0$$

Veamos ahora el otro método para la resolución del ejercicio. Lo haremos a modo de ejemplo sólo en el primer caso. Según la regla de la cadena

$$[(fog)]'(x) = f'(g(x)) \cdot g'(x) = 2(senx + cosx)(cosx - senx)$$

Si sustituimos en x = 0 nos quedaría:

$$(fog)'(0) = 2(sen0 + cos0)(cos0 - sen0) = 2$$

Obtenemos, obviamente, el mismo resultado.

1.2.5. Entre todos los rectángulos de área dada ¿cuál es el de perímetro mínimo?

(Septiembre 01)

- Solución:

Vamos a buscar una función a minimizar (que dependerá en un principio de dos variables) y una igualdad que ligue las variables. En nuestro caso son:

$$P(x,y) = 2x + 2y A = x \cdot y$$
 $\Longrightarrow P(x) = 2x + \frac{2A}{x} = \frac{2x^2 + 2A}{x}$ $\Longrightarrow y = \frac{A}{x}$ (1)

Vamos a derivar la función obtenida:

$$P'(x) = \frac{4x \cdot x - (2x^2 + 2A)}{x^2} = \frac{4x^2 - 2x^2 - 2A}{x^2} = \frac{2x^2 - 2A}{x^2}$$

Igualando la derivada a cero obtenemos:

$$\frac{2x^2 - 2A}{x^2} = 0 \Longrightarrow 2x^2 - 2A = 0 \Longrightarrow x^2 = A \Longrightarrow x = \pm \sqrt{A}$$

De las dos obtenidas sólo vale la positiva. Vamos a calcular la segunda derivada para ver que hay un mínimo.

$$P''(x) = \frac{4x \cdot x^2 - 2x(2x^2 - 2A)}{x^4} = \frac{4x^3 - 4x^3 + 4Ax}{x^4} = \frac{4Ax}{x^4}$$

Sustituyendo el valor de x obtenido tenemos:

$$P''\left(\sqrt{A}\right) = \frac{4A\sqrt{A}}{A^2} > 0$$

luego hay un mínimo. Sustituyendo $x = \sqrt{A}$ en (1) podemos calcular y.

$$x = \sqrt{A} \Longrightarrow y = \frac{A}{\sqrt{A}} = \sqrt{A}$$

Se trata por tanto de un cuadrado de lado \sqrt{A} .

1.2.6. Definir el concepto de derivada de una función f(x) en un punto x = a y explicar su relación con el crecimiento de la función.

(Junio 02)

- Solución:

La respuesta puede encontrarse en cualquier libro.

1.2.7. Representar la gráfica de la función $f(x) = 2x + (2x)^{-1}$, determinando los intervalos donde es creciente.

(Junio 02)

- Solución:

Nuestra función podemos ponerla
$$f(x) = 2x + (2x)^{-1} = 2x + \frac{1}{2x} = \frac{4x^2 + 1}{2x}$$
.

Vamos a buscar algunos datos para poder representarla.

Es evidente que el dominio de la función es $Dom f = \mathbb{R} - \{0\}$. También es obvio que tiene una asíntota vertical en x = 0, que no corta al eje X, ni al eje Y.

Vamos a estudiar la derivada.

$$f'(x) = \frac{8x \cdot 2x - 2 \cdot (4x^2 + 1)}{4x^2} = \frac{16x^2 - 8x^2 - 2}{4x^2} = \frac{8x^2 - 2}{4x^2}$$

Igualando a cero tenemos:

$$\frac{8x^2 - 2}{4x^2} = 0 \Longrightarrow 8x^2 - 2 = 0 \Longrightarrow x^2 = \frac{1}{4} \Longrightarrow x = \pm \frac{1}{2}$$

Vamos a estudiar el signo de la derivada para especificar donde crece y donde decrece, así como los máximos y mínimos, si los tiene.

En cuanto al crecimiento y decrecimiento, así como del estudio de la derivada, concluimos:

- Crece $\longrightarrow (-\infty, -1/2) \cup (1/2, +\infty)$.
- Decrece $\longrightarrow (-1/2,0) \cup (0,1/2)$.
- Máximo $\longrightarrow (-1/2, -2)$.
- Mínimo $\longrightarrow (1/2, 2)$.

Para afinar la representación puede hacerse una pequeña tabla de valores, viendo la representación en la figura 1.5.

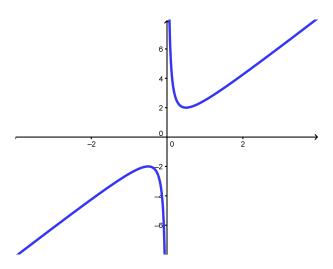


Figura 1.5: Representación gráfica de la función $f(x) = 2x + (2x)^{-1}$

1.2.8. Representar la gráfica de la función $f(x) = x^3 + x^{-3}$, determinando sus extremos (máximos y mínimos relativos).

(Septiembre 02)

- Solución:

Nuestra función escrita en forma de fracción es:

$$f(x) = x^3 + x^{-3} = x^3 + \frac{1}{x^3} = \frac{x^6 + 1}{x^3}$$

Es evidente que su dominio es $Dom f = \mathbb{R} - \{0\}$. Además la función es impar, pues:

$$f(-x) = \frac{(-x)^6 + 1}{(-x)^3} = \frac{x^6 + 1}{-x^3} = -\frac{x^6 + 1}{x^3} = -f(x)$$

Vamos a ver los puntos de corte con los ejes:

- Eje X \longrightarrow Hacemos y = 0.

$$\frac{x^6+1}{x^3}=0 \Longrightarrow x^6+1=0 \Longrightarrow$$
 No corta.

- Eje Y \longrightarrow Hacemos x=0. En este caso no corta, pues x=0 no pertenece al dominio.

Vamos a calcular la primera derivada para hallar los máximos y los mínimos.

$$y' = \frac{6x^5 \cdot x^3 - 3x^2 (x^6 + 1)}{x^6} = \frac{6x^8 - 3x^8 - 3x^2}{x^6} = \frac{3x^8 - 3x^2}{x^6}$$

Si igualamos a cero resulta

$$\frac{3x^8 - 3x^2}{x^6} = 0 \Longrightarrow 3x^8 - 3x^2 = 0 \Longrightarrow 3x^2 \left(x^6 - 1\right) = 0 \Longrightarrow$$

$$\Longrightarrow \left\{ \begin{array}{l} x = 0 \Longrightarrow \text{No pertenece al dominio.} \\ x^6 - 1 = 0 \Longrightarrow x^6 = 1 \Longrightarrow x = \pm 1 \end{array} \right.$$

Vamos a estudiar el signo de la derivada y así podemos decidir los máximos y mínimos.

De aquí deducimos que la función tiene:

- Un máximo en el punto (-1, -2).
- Un mínimo en el punto (1,2).

Es fácil observar que la función tiene una asíntota vertical en la recta x=0 y que no tiene asíntotas ni horizontales, ni oblicuas.

Puede hacerse una tabla de valores para afinar más la representación gráfica, pero no la haremos aquí. La representación gráfica pedida podemos verla en la figura 1.6.

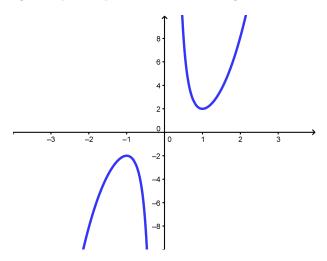


Figura 1.6: Representación gráfica de la función $f(x) = x^3 + x^{-3}$

1.2.9. Enuncia la regla de L'Hôpital y calcula el límite

$$\lim_{x \to 1} \frac{1 - \cos(2\pi x)}{(x - 1)^2}$$

(Septiembre 02)

- Solución:

La parte teórica de la pregunta puede verse en cualquier libro. Vamos a resolver el límite.

$$\lim_{x \to 1} \frac{1 - \cos(2\pi x)}{(x - 1)^2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \lim_{x \to 1} \frac{\cancel{2}\pi sen(2\pi x)}{\cancel{2}(x - 1)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \lim_{x \to 1} \frac{2\pi^2 cos(2\pi x)}{1} = 2\pi^2$$

1.2.10. Representar gráficamente la función $f(x) = e^x - ex$, determinando sus extremos relativos (máximos y mínimos relativos). ¿Existe algún valor de x en que f(x) sea negativo?

(Junio 03)

- Solución:

Vamos a empezar, como siempre, por ver su dominio.

- Es evidente que el $Dom f = \mathbb{R}$.
- Veamos ahora los cortes con los ejes:

• Eje X.
$$\longrightarrow$$
 Hacemos $y = 0$.
 $e^x - ex = 0 \Longrightarrow e^x = ex \Longrightarrow x = 1$

• Eje Y.
$$\longrightarrow$$
 Hacemos $x = 0$.
 $f(0) = 1$

- Vamos a realizar la derivada, la igualaremos a cero y la estudiaremos la misma.

$$f'(x) = e^{x} - e = 0 \Longrightarrow e^{x} = e \Longrightarrow x = 1$$

$$\begin{array}{c|c} & (-\infty, 1) & (1, \infty) \\ \hline e^{x} - e & - & + \\ & \searrow & \nearrow \end{array}$$

Para afinar la representación vamos a hacer una tabla de valores:

La representación gráfica podemos verla en la figura 1.7.

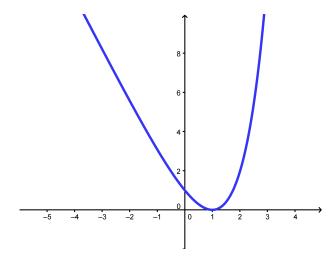


Figura 1.7: Representación gráfica de la función $f(x) = e^x - ex$

En cuanto al interrogante que nos hacen la respuesta es evidente viendo la gráfica, pero también puede razonarse si tenemos en cuenta que tiene un mínimo en el punto (1,0). La respuesta obvia es no.

1.2.11. Determinar una recta tangente a la parábola $y=2-x^2$ que sea paralela a la recta de ecuación 2x+y=4.

(Junio 03)

- Solución:

Como es paralela a la recta 2x + y = 4 la ecuación de la recta que buscamos tiene que ser de la forma 2x + y = k y de aquí deducimos que su pendiente tiene que ser m = -2.

Vamos a ver donde tiene la función $y = 2 - x^2$ una recta tangente con pendiente m = -2.

$$m_{tq} = f'(x) = -2x = -2 \Longrightarrow x = 1$$

Luego el punto en el que se produce la tangente es $f(1) = 2 - 1 = 1 \Longrightarrow (1,1)$.

Por tanto, para calcular k basta con sustituir el punto en la ecuación de la recta 2x + y = k.

$$2x + y = k$$
 en $(1,1) \Longrightarrow 2 + 1 = k \Longrightarrow k = 3$.

Luego la recta buscada es

$$2x + y = 3$$

1.2.12. Con un alambre de dos metros se desea formar un cuadrado y un círculo. Determinar el lado del cuadrado y el radio del círculo para que la suma de sus áreas sea mínima.

(Septiembre 03)

- Solución:

Para plantear el problema buscamos una función a minimizar (que estará en función de dos variables) y una ecuacuón que ligue las variables. Estas ecuaciones son:

$$A(l,r) = l^2 + \pi r^2 \Longrightarrow$$
 Ecuación a minimizar.
 $4l + 2\pi r = 2 \Longrightarrow 2l + \pi r = 1 \Longrightarrow$ Ecuación que liga las variables.

Vamos a despejar l en la última ecuación, resultando:

$$l = \frac{1 - \pi r}{2} \tag{1.1}$$

Sustituyendo en la primera tenemos:

$$\begin{split} A(r) &= \left(\frac{1-\pi r}{2}\right)^2 + \pi r^2 = \frac{1+\pi^2 r^2 - 2\pi r}{4} + \pi r^2 = \frac{1+\pi^2 r^2 - 2\pi r + 4\pi r^2}{4} = \\ &= \frac{(\pi^2 + 4\pi)r^2 - 2\pi r + 1}{4} \end{split}$$

Derivando la expresión obtenemos:

$$A'(r) = \frac{1}{4} \cdot \left[2(\pi^2 + 4\pi)r - 2\pi \right] = \frac{(\pi^2 + 4\pi)r - \pi}{2}$$

Igualando a cero resulta:

$$\frac{(\pi^2 + 4\pi)r - \pi}{2} = 0 \Longrightarrow (\pi^2 + 4\pi)r - \pi = 0 \Longrightarrow (\pi^2 + 4\pi)r = \pi \Longrightarrow$$
$$\Longrightarrow (\pi + 4)r = 1 \Longrightarrow r = \frac{1}{\pi + 4} \text{ u.}$$

Si hacemos la segunda derivada resulta:

$$A''(r) = \frac{\pi^2 + 4\pi}{2} > 0$$
 para cualquier valor de r.

En consecuencia para el valor de r que nosotros hemos calculado la función tiene un mínimo.

Vamos a calcular l sustituyendo en la igualdad (1.1).

$$l = \frac{1 - \pi \frac{1}{\pi + 4}}{2} = \frac{1 - \frac{\pi}{\pi + 4}}{2} = \frac{\cancel{\pi} + 4 - \cancel{\pi}}{2\pi + 8} = \frac{4}{2\pi + 8} = \frac{2}{\pi + 4} \text{ u.}$$

1.2.13. Determinar en qué puntos es negativa la derivada de la función $f(x) = e^x x^{-2}$.

(Septiembre 03)

- Solución:

Nuestra función es $f(x)=\frac{e^x}{x^2}.$ Su derivada por tanto será:

$$f'(x) = \frac{e^x x^2 - 2xe^x}{x^4} = \frac{xe^x(x-2)}{x^4}$$

Vamos a estudiar su signo. Calculamos para ello las raices del numerador y del denominador.

- Raices del numerador:

$$xe^{x}(x-2) = 0 \Longrightarrow \begin{cases} x = 0. \\ e^{x} = 0 \Longrightarrow \text{ No tiene solución.} \\ x - 2 = 0 \Longrightarrow x = 2. \end{cases}$$

- Raices del denominador:

$$x^4 = 0 \Longrightarrow x = 0.$$

Con los valores obtenidos construimos una tabla para estudiar el signo de la derivada.

Por tanto es negativa en el intervalo (0,2).

1.2.14. Determinar el mayor área que puede encerrar un triángulo rectángulo cuyo lado mayor mida 1 metro.

(Junio 04)

- Solución:

La figura 1.8 nos muestra la idea.

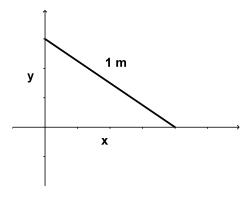


Figura 1.8: Visión gráfica del problema

Nosotros iremos moviendo la hipotenusa (lado mayor) haciendo variar x e y.

Necesitamos pues una función a maximizar (el área) y otra que ligue las dos variables. Dichas ecuaciones son:

$$A(x,y)=\frac{x.y}{2}$$
 (Función a maximizar)
$$x^2+y^2=1\Rightarrow y=\sqrt{1-x^2} \mbox{ (Ecuación que liga las variables)}$$

Por tanto, si sustituimos la y en la primera función obtenemos:

$$A(x) = \frac{x \cdot \sqrt{1-x^2}}{2} = \frac{1}{2} \cdot x \cdot \sqrt{1-x^2}$$

Vamos a derivar para ver los puntos que anulan dicha derivada. Entre estos valores se encuentran los máximos y los mínimos.

$$A'(x) = \frac{1}{2} \left[\sqrt{1 - x^2} + \frac{x \cdot (-2x)}{2 \cdot \sqrt{1 - x^2}} \right] = \frac{1}{2} \left[\frac{1 - x^2 - x^2}{\sqrt{1 - x^2}} \right] = \frac{1 - 2x^2}{2\sqrt{1 - x^2}}$$

Igualando esta expresión a cero tenemos:

$$\frac{1-2x^2}{2\sqrt{1-x^2}} = 0 \Longrightarrow -2x^2 + 1 = 0 \Longrightarrow 2x^2 = 1 \Longrightarrow x^2 = \frac{1}{2} \Longrightarrow x = \frac{\sqrt{2}}{2}$$

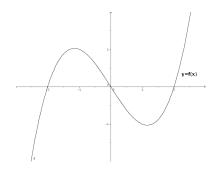
Para ver que tenemos en ese punto un máximo vamos a estudiar el signo de la derivada a ambos lados del número.

Tenemos que $A'(0) = \frac{1}{2} > 0$ y $A'(0'8) = \frac{-0'28}{1'2} < 0$ y por tanto hay un máximo.

En conclusión tenemos que:

$$x = \frac{\sqrt{2}}{2}$$
 é $y = \sqrt{1 - \left(\sqrt{\frac{1}{2}}\right)^2} = \sqrt{1 - \frac{1}{2}} = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}$

1.2.15. Si la gráfica de una función f(x) es:



representar aproximadamente la gráfica de la derivada f'(x).

(Junio 04)

- Solución:

Observando la gráfica tenemos que la función tiene las siguientes características:

- Crece en $(-\infty, -1) \cup (1, +\infty)$ Luego ahí f'(x) > 0.
- Decrece en (-1,1) Luego ahí f'(x) < 0.
- Tiene un máximo en $(-1,1) \Longrightarrow f'(-1) = 0$.

- Tiene un mínimo en $(1,-1) \Longrightarrow f'(1) = 0$.
- Es convexa en $(-\infty,0) \Longrightarrow f''(x) < 0 \Longrightarrow f'$ es decreciente en $(-\infty,0)$.
- Es cóncava en $(0, +\infty) \Longrightarrow f''(x) > 0 \Longrightarrow f'$ es creciente en $(0, +\infty)$.
- Hay un punto de inflexión en x = 0 como conclusión de los puntos anteriores, por tanto tiene un mínimo en x = 0.

Con todos estos datos tenemos que la gráfica podría ser la que vemos en la figura 1.9.

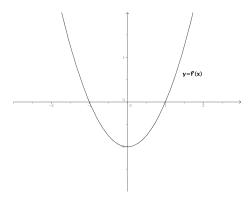


Figura 1.9: Representación aproximada de la función buscada

1.2.16. Se desea construir un paralelepípedo rectangular de 9 litros de volumen y tal que un lado de la base sea doble que el otro. Determinar las longitudes de sus lados para que el área total de sus 6 caras sea mínima.

(Septiembre 04)

- Solución:

Queremos minimizar el área total. Dicho área es la suma de las áreas de las seis caras. En el figura 1.10 podemos ver que este área es:

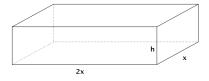


Figura 1.10: Visión gráfica del ejercicio

$$A(x,h) = 2.(2x.h) + 2.(h.x) + 2.(2x.x) = 4xh + 2xh + 4x^{2} = 4x^{2} + 6xh$$

Para ligar las variables tenemos el volumen que cumple

$$V = A_b \cdot h = 2x \cdot x \cdot h = 2x^2 \cdot h = 9 \Longrightarrow h = \frac{9}{2x^2}$$

Por tanto la función área queda:

$$A(x) = 4x^2 + 6x \frac{9}{2x^{\frac{1}{2}}} = 4x^2 + \frac{27}{x} = \frac{4x^3 + 27}{x}$$

Si derivamos tendremos:

$$A'(x) = \frac{12x^2 \cdot x - (4x^3 + 27)}{x^2} = \frac{12x^3 - 4x^3 - 27}{x^2} = \frac{8x^3 - 27}{x^2} = 0$$

Por tanto, la derivada se anula cuando $8x^3 - 27 = 0$. De aquí deducimos que:

$$8x^3 - 27 = 0 \Longrightarrow 8x^3 = 27 \Longrightarrow x^3 = \frac{27}{8} \Longrightarrow x = \sqrt[3]{\frac{27}{8}} = \frac{3}{2} dm.$$

Si estudiamos el comportamiento de la derivada en puntos próximos al obtenido vemos que se trata de un mínimo.

$$A'(1) = \frac{-19}{1} < 0 \text{ y } A'(2) = \frac{37}{4} > 0$$

En conclusión tenemos que $x = \frac{3}{2} \Longrightarrow h = \frac{9}{2 \cdot \frac{9}{4}} = \frac{36}{18} = 2$ dm.

Y estos eran los valores buscados.

1.2.17. Determinar los puntos de la curva plana $y^3 = 2x$ en que la recta tangente es perpendicular a la recta y + 6x = 0.

(Septiembre 04)

- Solución:

La curva de la que hablamos tiene ecuación $y^3 = 2x \implies y = \sqrt[3]{2x} = (2x)^{\frac{1}{3}}$. Por otro lado tenemos que la recta es $y + 6x = 0 \implies y = -6x \implies m = -6$.

De aquí deducimos que la perpendicular tiene por pendiente $m_{tg} = \frac{-1}{m} = \frac{1}{6}$.

Vamos a ver en que puntos tiene la curva pendiente $\frac{1}{6}$. Para ello derivamos la función y la igualamos a $\frac{1}{6}$.

$$y' = \frac{1}{3}(2x)^{-2/3} \cdot 2 = \frac{2}{3\sqrt[3]{4x^2}} = m_{tg}$$

$$\frac{2}{3\sqrt[3]{4x^2}} = \frac{1}{6} \Longrightarrow 3\sqrt[3]{4x^2} = 12 \Longrightarrow \sqrt[3]{4x^2} = 4 \Longrightarrow 4x^2 = 64 \Longrightarrow x^2 = 16 \Longrightarrow x = \pm 4$$

Por tanto, los puntos buscados son $P_1(4,2)$; $P_2(-4,-2)$.

1.2.18. Hallar la derivada en x = 0 de la función f(f(x)), donde $f(x) = (1 + x)^{-1}$.

(Junio 05)

- Solución

Tenemos que
$$f(x) = (1+x)^{-1} = \frac{1}{1+x} \Longrightarrow f'(x) = \frac{-1}{(1+x)^2}$$
.
Es obvio que $f(0) = 1$, que $f'(0) = -1$ y que $f'(1) = -\frac{1}{4}$.

20

Aplicamos la regla de la cadena:

$$[f(f(0))]' = f'(f(0)).f'(0) = f'(1).(-1) = \frac{-1}{4}.(-1) = \frac{1}{4}$$

1.2.19. Representar gráficamente la función f(x) = x - 2senx en el intervalo $-\pi < x < \pi$, determinando sus extremos (máximos y mínimos relativos).

(Junio 05)

- Solución:

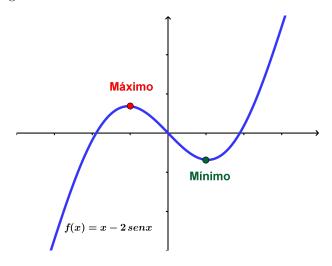
Tenemos la función f(x) = x - 2senx en el intervalo $-\pi < x < \pi$

Es obvio que el dominio de esta función es todo \mathbb{R} . También es evidente que no hay asíntotas. Vamos a estudiar la derivada:

$$f'(x) = 1 - 2cosx = 0 \Longrightarrow -2cosx = -1 \Longrightarrow cosx = \frac{1}{2} \Longrightarrow x = \frac{\pi}{3} \text{ y } x = -\frac{\pi}{3}$$

De este estudio deducimos que hay un máximo en $x=-\frac{\pi}{3}$ y un mínimo en $x=\frac{\pi}{3}$ Para representarla tendríamos que hacer una tabla de valores:

Su representación gráfica sería:



1.2.20. Enunciar el Teorema del Valor Medio del Cálculo Diferencial. Usarlo para demostrar que para cualesquiera números reales x < y se verifica que $cosy - cosx \le y - x$.

(Septiembre 05)

- Solución:

El enunciado del teorema puede encontrarse en cualquier libro.

Vamos a considerar la función $f(x) = \cos x$ que es obviamente continua y derivable en todo \mathbb{R} , y por lo tanto lo será en cualquier intervalo [x, y]. En consecuencia:

$$\exists \ c \in (x,y) \nearrow f'(c) = \frac{cosy - cosx}{y - x}$$

Ahora bien, $f'(x) = -senx \Longrightarrow f'(c) = -senc \Longrightarrow f'(c) \le 1$.

De aquí deducimos lo que queríamos:

$$\frac{cosy - cosx}{y - x} \leq 1 \Longrightarrow cosy - cosx \leq y - x$$

1.2.21. Hallar la derivada en el punto x = 0 de la función f(f(x)), donde f(x) = senx.

(Septiembre 05)

- Solución:

Vamos a realizar la derivada por la regla de la cadena:

$$[(fof)]'(0) = f'(f(0)) \cdot f'(0) = cos(sen(0)) \cdot cos0 = cos0 \cdot cos0 = 1 \cdot 1 = 1$$

1.2.22. Calcula

$$\lim_{x \to 0} \frac{1 + x - e^x}{sen^2 x}$$

(Junio 06)

- Solución:

Vamos a resolver el límite por la regla de L'Hôpital.

$$\lim_{x \to 0} \frac{1 + x - e^x}{sen^2 x} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{1 - e^x}{2 \ senx \ cosx} = \lim_{x \to 0} \frac{1 - e^x}{sen2x} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{-e^x}{2cos2x} = \frac{-1}{2}$$

1.2.23. Define el concepto de máximo relativo de una función f(x) y enuncia su relación con las derivadas sucesivas de f(x).

(Junio 06)

- Solución:

Es una pregunta teórica que puede encontrarse en cualquier libro.

1.2.24. Dada la función

$$f(x) = \frac{senx + sen(x+1)}{cosx - cos(x+1)}$$

en el intervalo $0 < x < 2\pi$, calcula su derivada, simplificándola en lo posible. ¿Es constante esta función f(x)?

(Septiembre 06)

- Solución:

Vamos a calcular la derivada que nos piden.

$$f'(x) = \frac{[\cos x + \cos(x+1)] \cdot [\cos x - \cos(x+1)] - [\sin x + \sin(x+1)] \cdot [-\sin x + \sin(x+1)]}{[\cos x - \cos(x+1)]^2} = \frac{[\cos x + \cos(x+1)] \cdot [\cos x - \cos(x+1)]}{[\cos x - \cos(x+1)]^2}$$

$$=\frac{\cos^2 x - \cos^2 (x+1) + \sin^2 x - \sin^2 (x+1)}{\left[\cos x - \cos (x+1)\right]^2} = \frac{1-1}{\left[\cos x - \cos (x+1)\right]^2} = 0$$

De esto deducimos que la función es constante, pues su derivada es cero para cualquier valor de x.

22

1.2.25. Calcula las asíntotas y determina los intervalos de crecimiento y decrecimiento de la función $f(x) = (1+x^2)^{-1}x$. A partir de los resultados obtenidos, dibuja la gráfica de la función f(x).

(Septiembre 06)

- Solución:

Nuestra función es $f(x) = \frac{x}{1+x^2}$. Es evidente que su dominio es todo \mathbb{R} , pues no se anula el denominador.

Vamos a hallar las asíntotas.

- Asíntotas verticales: Como no se anula el denominador no hay asíntotas verticales.
- Asíntotas horizontales:
 - $\bullet \lim_{x \to +\infty} \frac{x}{1+x^2} = 0.$
 - $\bullet \lim_{x \to -\infty} \frac{x}{1+x^2} = \lim_{x \to +\infty} \frac{-x}{1+x^2} = 0.$

Luego la recta y=0 es una asíntota horizontal tanto en $+\infty$, como en $-\infty$.

- Asíntotas oblicuas: Al tener asíntotas horizontales no tiene oblicuas.

Vamos a estudiar su derivada:

$$f'(x) = \frac{1 + x^2 - 2x \cdot x}{(1 + x^2)^2} = \frac{1 + x^2 - 2x^2}{(1 + x^2)^2} = \frac{-x^2 + 1}{(1 + x^2)^2}$$

Veamos para que valores se anula la derivada:

$$\frac{-x^2+1}{(1+x^2)^2} = 0 \Longrightarrow -x^2+1 = 0 \Longrightarrow x^2 = 1 \Longrightarrow x = \pm 1$$

Estudiemos su signo para ver el crecimiento y el decrecimiento:

De aquí deducimos que:

- La función crece en el intervalo (-1,1).
- La función decrece en $(-\infty, -1) \cup (1, +\infty)$.
- La función tiene un máximo en el punto $\left(1,\frac{1}{2}\right)$.
- La función tiene un mínimo en el punto $\left(-1,-\frac{1}{2}\right)$.
- También es evidente que corta a los ejes en el punto (0,0).

Por tanto su representación gráfica la podemos ver en la figura 1.11.

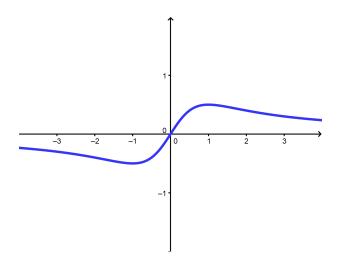


Figura 1.11: Representación gráfica de la función $f(x) = \frac{x}{1+x^2}$

1.2.26.

- a) Enuncia la regla de la cadena para derivar funciones compuestas.
- b) Dada la función $h(x) = e^{sen(f(x))}$, calcula el valor de su derivada en x = 0, sabiendo que f(0) = 0 y f'(0) = 1.

(Junio 07)

- Solución:

- a) Es una pregunta teórica que puede encontrarse en cualquier libro.
- b) Aplicando reiteradamente la regla de la cadena tenemos que:

$$h'(x) = e^{sen(f(x))} \cdot \left[sen(f(x)) \right]' = e^{sen(f(x))} \cdot cos(f(x)) \cdot f'(x)$$

Por tanto:

$$h'(0) = e^{sen(f(0))} \cdot cos(f(0)) \cdot f'(0) = e^{sen0} \cdot cos(0) \cdot 1 = e^{0} \cdot 1 \cdot 1 = 1$$

1.2.27. Determina los puntos de la parábola $y=x^2$ que están a mínima distancia del punto P=(0,1).

(Junio 07)

- Solución:

Los puntos de la parábola tienen la forma genérica $Q(x,x^2)$. La distancia de P a Q será:

$$d(P,Q) = g(x) = \sqrt{x^2 + (x^2 - 1)^2} = \sqrt{x^2 + x^4 - 2x^2 + 1} = \sqrt{x^4 - x^2 + 1}$$

Vamos a ver donde es mínima esa distancia.

$$g'(x) = \frac{4x^3 - 2x}{2\sqrt{x^4 - 2x^2 + 1}} = \frac{2x^3 - x}{\sqrt{x^4 - 2x^2 + 1}} = 0 \Longrightarrow$$

$$\implies 2x^3 - x = 0 \Longrightarrow x(2x^2 - 1) = 0 \Longrightarrow \begin{vmatrix} x = 0 \\ 2x^2 - 1 = 0 \Longrightarrow x = \pm \frac{\sqrt{2}}{2} \end{vmatrix}$$

Vamos a estudiar el signo de la derivada para ver donde la distancia es mínima.

En $\pm \frac{\sqrt{2}}{2}$ hay mínimos. Luego los puntos buscados son $P_1\left(-\frac{\sqrt{2}}{2},\frac{1}{2}\right)$ y $P_2\left(\frac{\sqrt{2}}{2},\frac{1}{2}\right)$.

1.2.28.

- a) Enuncia el Teorema de Rolle.
- b) Prueba que la función $f(x) = x^3 + x^2 x 1$ satisface las hipótesis en el intervalo [-1,1] y calcula un punto del intervalo abierto (-1,1) cuya existencia asegura el Teorema de Rolle.

(Septiembre 07)

- Solución:
 - a) La parte teórica puede encontrarse en cualquier libro.
 - b) Vamos a empezar por ver que se cumplen las hipótesis:
 - Obviamente es continua en [-1, 1], pues es un polinomio.
 - Por la misma razón sabemos que también es derivable.
 - También se cumple la tercera premisa

$$f(-1) = (-1)^3 + (-1)^2 - (-1) - 1 = -1 + 1 + 1 - 1 = 0$$
$$f(1) = (1)^3 + (1)^2 - (1) - 1 = 1 + 1 - 1 - 1 = 0$$

En consecuencia se cumple el teorema. Vamos a encontrar el punto donde la derivada vale cero:

$$f'(x) = 3x^{2} + 2x - 1 = 0$$
$$x = \frac{-2 \pm \sqrt{4 + 12}}{6} = \frac{-2 \pm 4}{6} = \begin{vmatrix} x = \frac{2}{6} = \frac{1}{3} \\ x = -1 \end{vmatrix}$$

Luego el punto buscado es $x=\frac{1}{3}\in (-1,1),$ ya que x=-1 no está en el interior del intervalo.

- **1.2.29.** Para la función $f(x) = x^2 \cdot e^{-x}$:
 - a) Comprueba que la recta y = 0 es una asíntota horizontal en $+\infty$.
 - b) Determina los intervalos de crecimiento y decrecimiento.
 - c) Con los datos anteriores, haz una representación aproximada de la gráfica de la función $f(x) = x^2 \cdot e^{-x}$.

- Solución:

a) Vamos a ver cuanto vale el límite.

$$\lim_{x \to +\infty} x^2 \cdot e^{-x} = \lim_{x \to +\infty} \frac{x^2}{e^x} = 0$$

Para lo anterior hay que tener en cuenta que e^x es un infinito de orden superior que x^2 . También puede aplicarse dos veces la regla de L'Hôpital para comprobarlo.

Por tanto la recta y = 0 es una asíntota horizontal en $+\infty$.

b) Vamos a calcular la derivada.

$$f(x) = x^2 \cdot e^{-x} = \frac{x^2}{e^x}$$

$$f'(x) = \frac{2xe^x - x^2e^x}{(e^x)^2} = \frac{e^x(2x - x^2)}{(e^x)^2} = \frac{2x - x^2}{e^x}$$

Igualando a cero tenemos.

$$\frac{2x - x^2}{e^x} = 0 \Longrightarrow 2x - x^2 = 0 \Longrightarrow x(2 - x) = 0 \quad \begin{vmatrix} x = 0 \\ 2 - x = 0 \Longrightarrow x = 2 \end{vmatrix}$$

Vamos a estudiar el signo de la derivada:

$$\begin{array}{c|ccccc} & (-\infty,0) & (0,2) & (2,+\infty) \\ \hline 2x-x^2 & - & + & - \\ & \searrow & \nearrow & \searrow \end{array}$$

Por tanto:

- Crece $\longrightarrow (0,2)$.
- Decrece $\longrightarrow (-\infty, 0) \cup (2, +\infty)$.
- c) Acompaña lo que ya sabemos por los apartados anteriores de una tabla de valores. Para formar dicha tabla basta tomar valores en -2, -1, 0, 1 y 2. Nosotros aquí la omitimos, pero la gráfica resultante puedes verla en la figura 1.12.

1.2.30.

- a) Enuncia la condición que se debe cumplir para que una recta y=l sea asíntota horizontal de una función f(x) en $+\infty$.
- b) Calcula las asíntotas verticales y horizontales (en $+\infty$ y en $-\infty$) de la función

$$f(x) = \frac{3x-1}{\sqrt{x^2-1}}$$

(Junio 08)

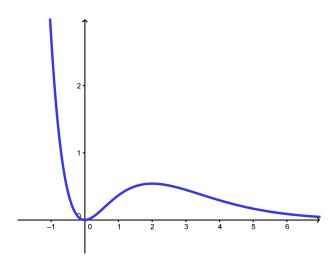


Figura 1.12: Representación gráfica de la función $f(x) = x^2 \cdot e^{-x}$

- Solución:

- a) Tiene que ocurrir que $\lim_{x \to +\infty} f(x) = l$.
- b) En primer lugar vamos a ver cual es el dominio de la función. Por un lado tenemos una raiz, por tanto, $x^2-1\geq 0$. Además, como la raiz está en el denominador no puede valer cero, en consecuencia:

$$x^2 - 1 > 0$$

Para resolver la inecuación, resolvemos la ecuación asociada.

$$x^2 - 1 = 0 \Longrightarrow x^2 = 1 \Longrightarrow x = \pm 1$$

Construimos la tabla

Luego el dominio de la función es $Dom f = (-\infty, -1) \cup (1, +\infty)$

Veamos las asíntotas.

- Asíntotas verticales: Estudiaremos las asíntotas en aquellos puntos que anulan el denominador
 - x = -1 Aqui sólo estudiaremos el límite por la izquierda, pues por la derecha no hay función.

función.
$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \frac{3x - 1}{\sqrt{x^2 - 1}} = \left[\frac{-4}{0} = \right] = -\infty. \text{ Luego es una A.V.}$$

 \bullet x=1 Aqui sólo estudiaremos el límite por la derecha, pues por la izquierda no hay función.

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{3x - 1}{\sqrt{x^2 - 1}} = \left[\frac{2}{0} = \right] = +\infty. \text{ Luego es una A.V.}$$

- Asíntotas horizontales:
 - $\lim_{x \to +\infty} \frac{3x-1}{\sqrt{x^2-1}} = \lim_{x \to +\infty} \frac{3x}{\sqrt{x^2}} = \lim_{x \to +\infty} \frac{3x}{x} = 3$ Luego y=3 es asíntota horizontal cuando $x \to +\infty$.
 - $\lim_{x \to -\infty} \frac{3x 1}{\sqrt{x^2 1}} = \lim_{x \to +\infty} \frac{-3x 1}{\sqrt{x^2 1}} = \lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2}} = \lim_{x \to -\infty} \frac{-3x}{x} = -3$ Luego y = -3 es asíntota horizontal cuando $x \to -\infty$.

1.2.31. Calcula el siguiente límite:

$$\lim_{x \to 0} \frac{\left(e^x - 1\right)^2}{e^{x^2} - 1}$$

(Junio 08)

- Solución:

Tenemos que
$$\lim_{x\to 0} \frac{\left(e^x-1\right)^2}{e^{x^2}-1} = \begin{bmatrix} 0\\0 \end{bmatrix}$$
.

Vamos a resolverlo utilizando la regla de L'Hôpital.

$$\lim_{x \to 0} \frac{\left(e^x - 1\right)^2}{e^{x^2} - 1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \lim_{x \to 0} \frac{2\left(e^x - 1\right)e^x}{2xe^{x^2}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \lim_{x \to 0} \frac{2\left(e^x - 1\right)e^x + 2e^xe^x}{2e^{x^2} + 4x^2e^{x^2}} = \frac{0 + 2}{2 + 0} = 1$$

1.2.32.

a) Calcula el siguiente límite

$$\lim_{x \to 0} \frac{\ln\left(x^2 + 1\right)}{x}$$

b) Indica, razonadamente, el valor que debe tomar a para que la siguiente función sea continua:

$$f(x) = \begin{cases} a & si \quad x = 0\\ \frac{\ln(x^2 + 1)}{x} & si \quad x \neq 0 \end{cases}$$

Nota: In denota el logaritmo neperiano.

(Septiembre 08)

- Solución:

a) Sustituyendo tenemos:

$$\lim_{x \to 0} \frac{\ln\left(x^2 + 1\right)}{x} = \left[\frac{0}{0}\right]$$

Vamos a resolverlo utilizando L'Hôpital:

$$\lim_{x \to 0} \frac{\ln(x^2 + 1)}{x} = \lim_{x \to 0} \frac{\frac{2x}{x^2 + 1}}{1} = \lim_{x \to 0} \frac{2x}{x^2 + 1} = 0$$

b) Tenemos la función

$$f(x) = \begin{cases} a & si \quad x = 0\\ \frac{\ln(x^2 + 1)}{x} & si \quad x \neq 0 \end{cases}$$

Obviamente la función es continua en todo \mathbb{R} salvo en el cero, por ser cociente de funciones continuas $(x^2 + 1 > 0)$.

Para que sea continua en el cero, el límite de la función en dicho punto y el valor de la función en él tienen que coincidir. Como en el apartado anterior vimos que el límite valía cero, deducimos que a debe valer cero.

28

1.2.33. Halla los puntos de la curva de ecuación $y = x^3 - 2x^2 + 1$ donde la recta tangente es paralela a la recta y + x - 2 = 0.

(Septiembre 08)

- Solución:

Sabemos que la pendiente de la recta tangente coincide con el valor de la derivada en el punto, si esta existe. Además, decir que la recta tangente es paralela a la recta dada es sinónimo de decir que sus pendientes son iguales. Por tanto:

$$f'(x) = 3x^2 - 4x$$

$$y + x - 2 = 0 \Longrightarrow y = -x + 2 \Longrightarrow m = -1$$

En consecuencia:

$$3x^2 - 4x = -1 \Longrightarrow 3x^2 - 4x + 1 = 0$$

Resolviendo la ecuación tenemos:

$$x = \frac{4 \pm \sqrt{16 - 12}}{6} = \frac{4 \pm 2}{6} = \begin{bmatrix} \frac{4+2}{6} = 1\\ \frac{4-2}{6} = \frac{2}{6} = \frac{1}{3} \end{bmatrix}$$

Luego los puntos buscados son:

$$-f(1) = 1 - 2 + 1 = 0 \Longrightarrow P_1(1,0)$$

$$-f\left(\frac{1}{3}\right) = \frac{1}{27} - \frac{2}{9} + 1 = \frac{1 - 6 + 27}{27} = \frac{22}{27} \Longrightarrow P_2\left(\frac{1}{3}, \frac{22}{27}\right)$$

1.2.34.

- a) Diga cuando un punto $(x_0, f(x_0))$ es de inflexión para una función f(x).
- b) Calcule los coeficientes a y b del polinomio $p(x) = ax^3 3x^2 + bx + 1$ para que su gráfica pase por el punto (1,1), teniendo aquí un punto de inflexión.
- c) Diga, razonadamente, si en el punto (1,1) la función p(x) es creciente o decreciente.

(Junio 09)

- Solución:

Vamos a contestar a cada apartado.

- a) Para que $(x_0, f(x_0))$ sea un punto de inflexión tienen que ocurrir dos cosas, $f''(x_0) = 0$ y $f'''(x_0) \neq 0$.
 - Más correctamente tendríamos que decir que $f''(x_0) = 0$ y que la siguiente derivada no nula sea de índice impar, aunque con la anterior respuesta probablemente valga.
- b) Tenemos que $p(x) = ax^3 3x^2 + bx + 1$.

Hay dos incógnitas, a y b, por tanto habrá que buscar dos ecuaciones para poder calcularlas. La primera ecuación sale de tener en cuenta que pasa por el punto (1,1), es decir, p(1) = 1, y la otra de tener un punto de inflexión en dicho punto, es decir, p''(1) = 0. Vamos a calcular p''(x).

$$p(x) = ax^3 - 3x^2 + bx + 1 \Rightarrow p'(x) = 3ax^2 - 6x + b \Rightarrow p''(x) = 6ax - 6$$

Por tanto, nuestro sistemas es:

En conclusión a = 1 y b = 2.

c) En el apartado anterior ya calculamos p'(x) y vamos a estudiar su signo para ver si crece o decrece en dicho punto.

$$p'(1) = 3 - 6 + 2 = -1 < 0$$

Luego la función es decreciente en (1,1).

1.2.35. Calcule los máximos y mínimos relativos de la función $f(x) = \frac{x}{2} + \cos x$ en el intervalo $0 < x < 2\pi$. Tenga en cuenta que los ángulos se miden en radianes.

(Junio 09)

- Solución:

Vamos a calcular la primera y segunda derivada de la función. Estas derivadas son:

$$f'(x) = \frac{1}{2} - senx$$
 y $f''(x) = -cosx$

Sabemos que habrá un máximo o un mínimo relativo en x_0 si $f'(x_0) = 0$ y $f''(x_0) < 0$ ó $f''(x_0) > 0$ respectivamente.

$$f'(x) = 0 \Rightarrow \frac{1}{2} - senx = 0 \Rightarrow senx = \frac{1}{2} \Rightarrow \begin{vmatrix} x = \frac{\pi}{6} \\ x = \frac{5\pi}{6} \end{vmatrix}$$

Veamos el valor, en cada caso, de f''(x).

- $f''\left(\frac{\pi}{6}\right) = -\cos\frac{\pi}{6} = -\frac{\sqrt{3}}{2} < 0 \Rightarrow \text{En } x = \frac{\pi}{6} \text{ hay un máximo.}$
- $\mathbf{F}''\left(\frac{5\pi}{6}\right) = -\cos\frac{5\pi}{6} = -\left(-\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{2} > 0 \Rightarrow \text{En } x = \frac{5\pi}{6} \text{ hay un mínimo.}$

1.2.36.

- a) Enuncie el teorema de Rolle.
- b) Aplique dicho teorema para probar que, cualquiera que sea el valor del número real a, la ecuación $x^3 12x + a = 0$ no puede tener dos soluciones distintas en el intervalo cerrado [-2,2].

(Septiembre 09)

- Solución:

- a) Este teorema lo podemos encontrar en cualquier libro.
- b) Sea $f(x) = x^3 12x + a$ la función asociada a la ecuación dada. Obviamente la función es continua en el intervalo [-2, 2] y derivable en el intervalo abierto, pues es un polinomio.

30

Vamos a comprobar lo que nos piden por el método de reducción al absurdo. Supongamos que tiene dos valores x_1 y x_2 en los cuales la función se anula (sinónimo de tener dos soluciones). Si eso es así, en el intervalo que tiene como extremos dichos puntos se cumplen las hipótesis del teorema de Rolle, pues sería continua y derivable en dichos intervalos (por ser polinómica) y tendría el mismo valor en los extremos, y en consecuencia, se cumpliría la tesis de dicho teorema. Por tanto, debe existir un valor de la variable x en el interior del intervalo (x_1, x_2) en el que se anule la derivada.

Ahora bien, la derivada de la función se anula:

$$f'(x) = 3x^2 - 12 = 0 \Rightarrow x = \pm 2$$

Luego, no se anula en el intervalo pedido y por tanto, esto contradice el hecho de que se cumple la tesis del teorema. Como consecuencia de ello deducimos que la suposición de partida no se cumple, es decir, no existen los x_1 y x_2 supuestos, no hay dos raices en el intervalo [-2,2]

1.2.37.

a) Calcule el límite

$$\lim_{x \to 0} \frac{e^x - 1}{x}$$

b) Diga, razonadamente, el valor que debe tomar c para que la siguiente función sea continua:

$$f(x) = \begin{cases} \frac{e^x - 1}{x} & si \quad x \neq 0 \\ c & si \quad x = 0 \end{cases}$$

(Septiembre 09)

- Solución:

Vamos a calcular el límite aplicando la regla de L'Hôpital.

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \begin{bmatrix} 0\\0 \end{bmatrix} = \lim_{x \to 0} \frac{e^x}{1} = 1$$

Hecho esto vamos a resolver el segundo apartado.

Obviamente si $x \neq 0$ la función es continua, por ser un cociente de funciones continuas.

Para ser continua en x = 0 la función debe existir en dicho punto y coincidir con el límite. Como el límite, según vimos en el apartado anterior, vale 1, deducimos que c tiene que valer 1.

1.2.38.

- a) Escriba la "regla de la cadena" para la derivación de funciones compuestas.
- b) Calcule, y simplifique en lo posible, la derivada de la función

$$f(x) = ln\left(\frac{1 - cosx}{1 + cosx}\right), \qquad 0 < x < \pi$$

(Junio 10 - Fase general)

- Solución:

La respuesta al primer apartado podemos encontrarla en cualquier libro.

Antes de realizar la derivada vamos a aplicar las propiedades de los logartimos.

$$ln\left(\frac{1-\cos x}{1+\cos x}\right) = ln(1-\cos x) - ln(1+\cos x)$$

Ahora vamos a derivar y obtenemos:

$$f'(x) = \frac{senx}{1 - cosx} - \frac{-senx}{1 + cosx} = \frac{senx}{1 - cosx} + \frac{senx}{1 + cosx} = \frac{senx(1 + cosx) + senx(1 - cosx)}{1 - cos^2x} = \frac{senx}{1 - cos^2x}$$

$$= \frac{senx + senxcosx + senx - senxcosx}{sen^2x} = \frac{2senx}{sen^2x} = \frac{2}{senx} = 2cosecx$$

1.2.39. Calcule el límite

$$\lim_{x \to 0} \frac{e^x - x cos x - 1}{sen x - x + 1 - cos x}$$

(Junio 10 - Fase específica)

- Solución:

Sustituyendo tenemos queda

$$\lim_{x \to 0} \frac{e^x - x \cos x - 1}{\sin x - x + 1 - \cos x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Vamos a resolver el límite usando la regla de L'Hôpital dos veces:

$$\lim_{x \to 0} \frac{e^x - x\cos x - 1}{\sin x - x + 1 - \cos x} = \lim_{x \to 0} \frac{e^x - \cos x + x\sin x}{\cos x - 1 + \sin x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} =$$

$$= \lim_{x \to 0} \frac{e^x + \sin x + \sin x + x\cos x}{-\sin x + \cos x} = \frac{1}{1} = 1$$

1.2.40.

- a) Defina la noción de mínimo relativo de una función.
- b) Para cada x sea h(x) la suma de las coordenadas del punto (x, f(x)) de la gráfica de $f(x) = x^4 + x^3 + x^2 x + 1$. Calcule los extremos relativos de h(x).
- c) ¿Tiene h(x) algún extremo absoluto? Razone la respuesta.

(Junio 10 - Fase específica)

- Solución:

El primer apartado podemos encontrarlo en cualquier libro. Vamos a constestar al segundo. La función h(x) es:

$$h(x) = x + f(x) = x + x^4 + x^3 + x^2 - x + 1 = x^4 + x^3 + x^2 + 1$$

Vamos a derivar para calcular los extremos relativos.

$$h'(x) = 4x^3 + 3x^2 + 2x$$

Vamos a ver donde se anula dicha derivada.

$$4x^3 + 3x^2 + 2x = 0 \Longrightarrow x(4x^2 + 3x + 2) = 0$$

Esto ocurre cuando x=0 y cuando $4x^2+3x+2=0$. Al resolver la segunda vemos que el discriminante es negativo, por lo que no tiene solución. Por tanto hay sólo un posible extremo relativo en x=0. Vamos a hacer la segunda derivada.

$$h''(x) = 12x^2 + 6x + 2 \Longrightarrow h''(0) = 2 > 0$$

Por tanto hay un mínimo relativo en el punto P(0,1).

La respuesta al tercer apartado es si. Este mínimo relativo se transforma en mínimo absoluto, pues tanto cuando $x \to -\infty$, como cuando $x \to +\infty$ la función se va a ir a $+\infty$.

1.2.41. Diga, razonando la respuesta, qué valor debe tomar c para que sea continua la función:

$$f(x) = \begin{cases} c & \text{si } x = 0 \\ \frac{e^x - 1 - x}{x^2} & \text{si } x \neq 0 \end{cases}$$

(Septiembre 10 - Fase general)

- Solución:

Si $x \neq 0$ es obvio que la función es continua por ser un cociente de funciones continuas. Para que sea continua en x = 0 tiene que ocurrir que

$$c = \lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$$

Calculemos el límite aplicando la regla de L'Hôpital.

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \left[\frac{0}{0} \right] = \lim_{x \to 0} \frac{e^x - 1}{2x} = \left[\frac{0}{0} \right] = \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2}$$

Luego $c = \frac{1}{2}$ para que sea continua.

1.2.42. Halle todos los puntos de la gráfica de la función $f(x) = x^3 + x^2 + x + 1$ en los que su recta tangente sea paralela a la recta de ecuación 2x - y = 0.

 $(Septiembre\ 10$ - $Fase\ general)$

- Solución:

Para que eso ocurra en x_0 tiene que ocurrir que $f'(x_0) = m_r$. Calculemos ambas cosas:

$$f'(x) = 3x^2 + 2x + 1$$

$$2x - y = 0 \Longrightarrow y = 2x \Longrightarrow m_r = 2$$

$$\implies 3x^2 + 2x + 1 = 2 \Longrightarrow 3x^2 + 2x - 1 = 0$$

Resolviendo la ecuación

$$x = \frac{-2 \pm \sqrt{4 + 12}}{6} = \frac{-2 \pm 4}{6} = \begin{bmatrix} x = \frac{2}{6} = \frac{1}{3} \\ x = \frac{-6}{6} = -1 \end{bmatrix}$$

tenemos que los puntos buscados son:

$$\bullet \left(\frac{1}{3}, f\left(\frac{1}{3}\right)\right) = \left(\frac{1}{3}, \frac{40}{27}\right)$$

$$-(-1, f(-1)) = (-1, 0)$$

1.2.43.

- a) Estudie el dominio, los extremos relativos, la curvatura (intervalos de concavidad y de convexidad) y los puntos de inflexión de la función $f(x) = ln(1+x^2)$ (ln denota el logaritmo neperiano).
- b) Represente la gráfica de $f(x) = ln(1+x^2)$ utilizando los datos obtenidos en el apartado (a).

(Junio 10 - Fase específica)

- Solución:

a) El dominio de la función es todo \mathbb{R} , pues $1 + x^2 \ge 1 \ \forall x \in \mathbb{R}$.

Vamos a calcular la primera y la segunda derivada de f.

$$f'(x) = \frac{2x}{1+x^2}$$

$$f''(x) = \frac{2(1+x^2) - 2x \cdot 2x}{(1+x^2)^2} = \frac{2+2x^2 - 4x^2}{(1+x^2)^2} = \frac{2-2x^2}{(1+x^2)^2}$$

Comenzaremos estudiando la primera derivada.

$$f'(x) = 0 \Longrightarrow \frac{2x}{1+x^2} = 0 \Longrightarrow x = 0$$

Vamos a estudiar el signo de la derivada.

$$\begin{array}{c|cccc} & (-\infty,0) & (0,+\infty) \\ \hline \hline 2x & - & + \\ \hline 1+x^2 & \nearrow & \end{array}$$

En consecuencia la función crece en $(0, +\infty)$, decrece en $(-\infty, 0)$ y hay un mínimo relativo en (0, f(0)) = (0, 0). Estudiemos ahora la segunda derivada.

$$f''(x) = 0 \Longrightarrow \frac{2 - 2x^2}{(1 + x^2)^2} = 0 \Longrightarrow 2 - 2x^2 = 0 \Longrightarrow x = \pm 1$$

Vamos a estudiar el signo de la segunda derivada.

Ante la falta de un criterio común, basta con ver distintos libros de texto, prefiero decir que la función es:

- Cóncava hacia arriba en (-1,1).
- Cóncava hacia abajo en $(-\infty, -1) \cup (1, +\infty)$.
- Puntos de inflexión en (-1, ln2) y (1, ln2).
- b) Es obvio que la función es simétrica respecto del eje Y y podemos completar la gráfica con una tabla de valores. La gráfica buscada podemos verla en la figura 1.13

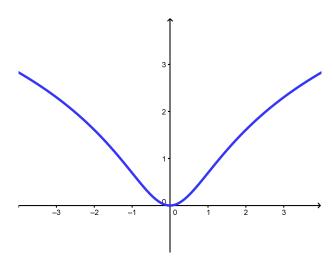


Figura 1.13: Representación gráfica de la función $f(x) = ln(1 + x^2)$

1.2.44.

- a) Enuncie el teorema de Rolle.
- b) Pruebe que cualquiera que sea la constante a la función $f(x) = x^3 5x^2 + 7x + a$ cumple las hipótesis de dicho teorema en el intervalo [1,3]. Calcule un punto del intervalo abierto (1,3) cuya existencia asegura el teorema de Rolle.

(Junio 11)

- Solución:

El primer apartado del ejercicio podemos encontrarlo en cualquier libro. Vamos a contestar al segundo.

Por ser un polinomio es evidente que la función f es continua en [1,3] y derivable en (1,3). Veamos cuanto vale en los extremos:

$$f(1) = 1 - 5 + 7 + a = a + 3$$

$$f(3) = 27 - 45 + 21 + a = a + 3$$

Luego f(1) = f(3) independientemente del valor de a.

En consecuencia se cumplen las hipótesis del teorema de Rolle. Vamos a calcular el punto que cumple la tesis.

$$f'(x) = 3x^{2} - 10x + 7 = 0$$

$$x = \frac{10 \pm \sqrt{100 - 84}}{6} = \frac{10 \pm 4}{6} = \begin{bmatrix} \frac{14}{6} \\ 1 \end{bmatrix}$$

Como el punto que buscamos tiene que pertenecer al intervalo abierto (1,3), el valor x=1 no sirve y el valor buscado es $x=\frac{14}{6}$.

1.2.45.

a) Estudie las asíntotas, los extremos relativos y los puntos de inflexión de la función $f(x) = xe^{-x}$.

b) Represente, utilizando los datos obtenidos en el apartado anterior, la gráfica de la función $f(x)=xe^{-x}$.

(Junio 11)

- Solución:

Nuestra función la vemos mejor de la siguiente forma:

$$f(x) = xe^{-x} = \frac{x}{e^x}$$

El dominio de esta función es todo \mathbb{R} , pues la función exponencial siempre es estrictamente positiva en todo \mathbb{R} . Vamos a estudiar las asíntotas:

- Asíntotas verticales: No tiene, por lo razonado anteriormente.
- Asíntotas horizontales:

$$\lim_{x \to +\infty} \frac{x}{e^x} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to +\infty} \frac{1}{e^x} = 0$$

$$\lim_{x \to -\infty} \frac{x}{e^x} = \lim_{x \to +\infty} \frac{-x}{e^{-x}} = \lim_{x \to +\infty} -xe^x = -\infty$$

Por tanto hay una asíntota horizontal en la recta y=0 cuando $x\to +\infty$

- Asíntotas oblicuas: Cuando $x \to +\infty$ no puede haberla por que hay asíntota horizontal. Veamos que pasa cuando $x \to -\infty$.

$$m = \lim_{x \to -\infty} \frac{\frac{x}{e^x}}{x} = \lim_{x \to -\infty} \frac{1}{e^x} = \lim_{x \to +\infty} \frac{1}{e^{-x}} = \lim_{x \to +\infty} e^x = +\infty$$

Luego no hay asíntota oblicua.

Vamos a estudiar la derivada:

$$f'(x) = \frac{e^x - xe^x}{e^{2x}} = \frac{e^x(1-x)}{e^{2x}} = \frac{1-x}{e^x} = 0 \Longrightarrow x = 1$$

Vamos a estudiar la monotonía:

$$\begin{array}{c|cccc} & (-\infty,1) & (1,+\infty) \\ \hline \hline 1-x & + & - \\ \nearrow & \searrow \end{array}$$

Luego en x=1 hay un máximo. Dicho punto es $M\left(1,\frac{1}{e}\right)$.

Vamos a estudiar la segunda derivada.

$$f''(x) = \frac{-e^x - (1-x)e^x}{e^{2x}} = \frac{e^x(-1-1+x)}{e^{2x}} = \frac{-2+x}{e^x} = 0 \Longrightarrow x = 2$$

Vamos a estudiar la curvatura.

$$\begin{array}{c|cccc} & (-\infty,2) & (2,+\infty) \\ \hline -2+x & - & + \\ \hline \end{array}$$

Luego en x=2 hay un punto de inflexión en $P\left(2,\frac{2}{e^2}\right)$. La representación gráfica que nos piden es:

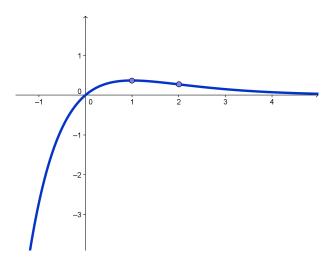


Figura 1.14: Representación gráfica de la función $f(x) = xe^{-x}$

1.2.46. Determine valores de los parámetros a y b para que la función $f(x) = a \cos^2 x + bx^3 + x^2$ tenga un punto de inflexión en x = 0.

(Septiembre 11)

- Solución:

Vamos a calcular f' y f''.

$$f'(x) = -2a \operatorname{sen} x \cos x + 3bx^2 + 2x = -a \operatorname{sen} 2x + 3bx^2 + 2x$$

 $f''(x) = -2a \cos 2x + 6bx + 2$

Es obvio que f'(0) = 0 sean cuales sean los valores de a y b.

Si
$$x = 0 \Longrightarrow f''(0) = -2a + 2 = 0 \Longrightarrow a = 1$$

Para que haya un punto de inflexión debe anularse la segunda derivada y ser distinta de cero la tercera, pues al anularse la primera para cualquier valor de a y b si se anula la tercera podría haber un máximo o un mínimo. Hagamos la tercera derivada.

$$f'''(x) = 4a \operatorname{sen} 2x + 6b \Longrightarrow f'''(0) = 6b$$

Luego la tercera derivada se anula si b=0. Como además la $f^{IV}(x)=8a$ cos 2x y es obvio que $f^{IV}(0)=8a=8>0$ tendríamos que si a=1 y b=0 lo que presenta es un mínimo. En resumen:

- a) Si a=1 y $b\neq 0$ tenemos un punto de inflexión con tangente horizontal.
- b) Si a = 1 y b = 0 tenemos un mínimo.

1.2.47. Calcule el límite

$$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{sen^2 x}$$

(Septiembre 11)

- Solución:

$$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{sen^2 x} = \begin{bmatrix} 0 \\ \overline{0} \end{bmatrix} = \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{2 \ senx \ cosx} = \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{sen2x} = \begin{bmatrix} 0 \\ \overline{0} \end{bmatrix}$$
$$= \lim_{x \to 0} \frac{e^x - e^{-x}}{2 \ cos2x} = \frac{0}{2} = 0$$

1.2.48.

- a) Determine el punto (x,y) de la parábola $y=x^2$ en el que la suma x+y alcanza su mínimo valor.
- b) Explique por qué dicho mínimo es absoluto.

(Junio 12)

- Solución:

a) Vamos a resolverlo como un problema de máximos y mínimos. Nos dan de forma muy clara la función a minimizar y la ecuación que relaciona las variables.

$$S(x,y) = x+y$$

 $y = x^2$ $\Longrightarrow S(x) = x+x^2$

Derivamos e igualamos a cero:

$$S'(x) = 1 + 2x = 0 \Longrightarrow x = -\frac{1}{2}$$

Hacemos la segunda derivada

$$S''(x)=2\Longrightarrow S''\left(-\frac{1}{2}\right)=2>0\Longrightarrow$$
Es un mínimo

Sustituyendo en $y=x^2$ tenemos que el punto buscado es $\left(-\frac{1}{2},\frac{1}{4}\right)$

b) Tenemos que la función S(x,y), una vez sustituida la condición $y=x^2$, resulta ser una parábola en la que el coeficiente de x^2 es positivo y en la que el punto resultante es su vértice, que sería su mínimo absoluto.

1.2.49. Considere la función f(x) = |x| + |x - 2|.

- a) Exprese f(x) como una función definida a trozos.
- b) Dibuje la gráfica de f(x).
- c) Escriba el intervalo abierto de la recta real formado por los puntos en los que f(x) es derivable y se anula su derivada.

(Junio 12)

- Solución:

a) Por como se define el valor absoluto se van a producir tantos trozos como trozos delimiten los valores que anulen cada valor absoluto. Los valores que los anulan son 0 y 2. Veamos en la siguiente tabla que ocurre antes de escribir la función.

	$(-\infty,0)$	(0,2)	$(2,+\infty)$
x	-x	x	x
x-2	-(x-2) = -x+2	-(x-2) = -x+2	x-2
x + x - 2	-2x + 2	2	2x-2

La función quedará:

$$f(x) = |x| + |x+2| = \begin{cases} -2x+2 & \text{si} & x \le 0\\ 2 & \text{si} & 0 < x \le 2\\ 2x-2 & \text{si} & x > 2 \end{cases}$$

b) La gráfica es muy sencilla de representar y el resultado obtenido es:

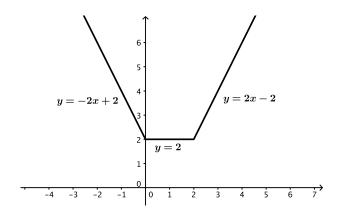


Figura 1.15: Representación gráfica de la función |x| + |x - 2|

c) De entrada es evidente que f(x) es continua en todo \mathbb{R} . También es obvio que es derivable en $\mathbb{R} - \{0, 2\}$, pues en estos puntos presenta puntos angulosos. La función derivada es:

$$f'(x) = \begin{cases} -2 & \text{si} & x < 0 \\ 0 & \text{si} & 0 < x < 2 \\ 2 & \text{si} & x > 2 \end{cases}$$

Luego el intervalo pedido es (0,2).

1.2.50.

a) Calcule el siguiente límite (ln denota el logaritmo neperiano):

$$\lim_{x\to 0^+} x \cdot \ln x$$

- b) Estudie los extremos relativos, las asíntotas y el signo de la función $f(x) = x \cdot \ln x$ definida en el intervalo abierto $(0, +\infty)$.
- c) Utilizando los datos obtenidos en los apartados a) y b) represente de forma aproximada la gráfica de la función f(x) del apartado b)

(Septiembre 12)

- Solución:

a) De entrada tenemos que:

$$\lim_{x \to 0^+} x \cdot \ln x = [0 \cdot (-\infty)]$$

Para resolver esta indeterminación vamos a transformarlo en una indeterminación de la forma

 $\frac{\infty}{\infty}$ y después aplicaremos la regla de L'Hôpital.

$$\lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} = \left[\frac{-\infty}{\infty}\right] = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} \frac{-x^2}{x} = \lim_{x \to 0^+} -x = 0$$

- b) Es obvio que el $Dom f = (0, +\infty)$, pues ese es el dominio de $\ln x$. Como x es positivo en el dominio, el signo de la función es el signo de $\ln x$. Por tanto:
 - f(x) > 0 si x > 1
 - f(x) < 0 si 0 < x < 1

Vamos a estudiar las asíntotas:

- Asíntotas horizontales:

 $\lim_{x \to ln} x \cdot ln x = +\infty$, luego no tiene asíntota horizontal, pues, por su dominio, no tiene sentido estudiar que pasa en $-\infty$.

- Asíntota oblícua:

 $m = \lim_{x \to +\infty} \frac{x \cdot \ln x}{x} = \lim_{x \to +\infty} \ln x = +\infty$, luego tampoco tiene.

El único punto que tendría sentido estudiar es $x=0^+$, pero ese límite vale cero, como vimos en el apartado anterior.

Vamos a estudiar la derivada.

$$f'(x) = \ln x + x \frac{1}{x} = \ln x + 1$$

Veamos donde vale cero la derivada:

$$\ln x + 1 = 0 \Longrightarrow \ln x = -1 \Longrightarrow x = \frac{1}{e}$$

Estudiemos el signo de la derivada:

$$\begin{array}{c|c} & \left(0,\frac{1}{e}\right) & \left(\frac{1}{e},+\infty\right) \\ \hline ln\,x+1 & - & + \\ & \searrow & \nearrow \end{array}$$

Luego crece en $\left(\frac{1}{e}, +\infty\right)$ y decrece en $\left(0, \frac{1}{e}\right)$. Por tanto tiene un mínimo en $\left(\frac{1}{e}, -\frac{1}{e}\right)$

c) Para pintar la gráfica basta ver que $\lim_{x \to 0^+} x \cdot \ln x = 0$ y hacer una tabla de valores. La gráfica resultante es:

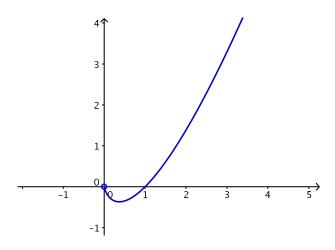


Figura 1.16: Representación gráfica de la función $f(x) = x \cdot \ln x$

1.2.51.

- a) Estudie las asíntotas de la función $f(x) = e^{-x^2}$.
- b) Calcule los extremos relativos y los puntos de inflexión de f(x).
- c) Utilizando los datos obtenidos en los apartados a) y b), haga la representación gráfica aproximada de la función f(x).

(Septiembre 12)

- Solución:

- a) Vamos a estudiar las asíntotas:
 - Asíntotas horizontales: $\lim_{x\to +\infty} e^{-x^2} = \lim_{x\to +\infty} \frac{1}{e^{x^2}} = 0$ $\lim_{x\to -\infty} e^{-x^2} = \lim_{x\to +\infty} e^{-(-x)^2} = \lim_{x\to +\infty} e^{-x^2} = 0$

Luego tiene una asíntota horizontal en la recta y = 0.

- No puede tener asíntota oblicua, pues ya tiene asíntota horizontal.
- Asíntota vertical: Tenemos que $f(x) = e^{-x^2} = \frac{1}{e^{x^2}}$. Es obvio que el denominador no se anula, pues la exponencial es siempre estrictamente positiva, por tanto, no tiene asíntota vertical.
- b) Vamos a estudiar f'(x).

$$f'(x) = -2x e^{-x^2} = 0 \Longrightarrow x = 0$$

Vamos a estudiar el signo de la derivada.

$$\begin{array}{c|ccccc} & (-\infty,0) & (0,+\infty) \\ \hline -2x e^{-x^2} & + & - \\ \nearrow & \searrow \end{array}$$

Luego crece en $(-\infty,0)$ y decrece en $(0,+\infty)$. Por tanto tiene un máximo en (0,1).

Vamos a estudiar la derivada segunda.

$$f''(x) = -2e^{-x^2} + 4x^2e^{-x^2} = e^{-x^2}(-2 + 4x^2) = 0 \Longrightarrow -2 + 4x^2 = 0 \Longrightarrow 4x^2 = 2$$
$$\Longrightarrow x^2 = \frac{1}{2} \Longrightarrow x = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{2}}{2}$$

Vamos a estudiar el signo de f''(x).

$$\frac{\left| \left(-\infty, -\frac{\sqrt{2}}{2} \right) \right| \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right) \left| \left(\frac{\sqrt{2}}{2}, +\infty \right) \right|}{e^{-x^2} \left(-2 + 4x^2 \right) + \left| - \right|}$$

Luego tiene puntos de inflexión en:

•
$$x = \frac{\sqrt{2}}{2} \Longrightarrow \left(\frac{\sqrt{2}}{2}, e^{-1/2}\right)$$

•
$$x = -\frac{\sqrt{2}}{2} \Longrightarrow \left(-\frac{\sqrt{2}}{2}, e^{-1/2}\right)$$

c) Con los datos obtenidos es fácil representar la gráfica

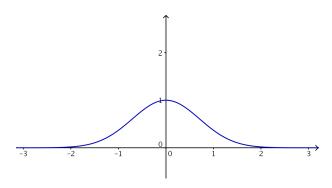


Figura 1.17: Representación gráfica de la función $f(x) = e^{-x^2}$

1.2.52. Estudie si la recta r de ecuación y = 4x - 2 es tangente a la gráfica de la función $f(x) = x^3 + x^2 - x + 1$ en alguno de sus puntos.

(Junio 13)

- Solución:

Sabemos que la pendiente de la recta tangente a la función en un punto coincide, si la función es derivable en dicho punto, con el valor de la derivada en el punto. Vamos primero a comprobar donde la derivada de la función coincide con la pendiente de la recta que nos dan, es decir, donde la derivada vale 4.

$$f'(x) = 3x^2 + 2x - 1 = 4 \Longrightarrow 3x^2 + 2x - 5 = 0 \Longrightarrow \begin{cases} x = 1 \\ x = -\frac{10}{6} = -\frac{5}{3} \end{cases}$$

Vamos a ver ahora en cual de esos valores la función y la recta valen lo mismo.

= x = 1

$$f(1) = 1 + 1 - 1 + 1 = 2$$
$$y = 4 \cdot 1 - 2 = 2$$

Luego en este valor de x la recta es tangente a la curva.

$$f\left(-\frac{5}{3}\right) = -\frac{125}{27} + \frac{25}{9} + \frac{5}{3} + 1 = \frac{22}{27}$$
$$y = 4 \cdot \left(-\frac{5}{3}\right) - 2 = -\frac{20}{3} - 2 = -\frac{26}{3}$$

Luego en este valor de x la recta no es tangente a la curva.

1.2.53.

- a) Defina a trozos la función $f(x) = 2 x \cdot |x|$ y represéntela gráficamente.
- b) Estudie la derivabilidad de f(x) en toda la recta real.
- c) Calcule la función derivada f'(x) para los valores de x que exista.

(Septiembre 13)

- Solución:

Vamos a responder al primer apartado. Los trozos en los que vamos a dividir \mathbb{R} se obtienen de los valores que anulan lo que hay dentro del valor absoluto. En nuestro caso esto ocurre cuando x=0. Por tanto:

$$f(x) = \begin{cases} 2 - x \cdot (-x) & x \le 0 \\ 2 - x \cdot x & x > 0 \end{cases} = \begin{cases} 2 + x^2 & x \le 0 \\ 2 - x^2 & x > 0 \end{cases}$$

La representación gráfica es:

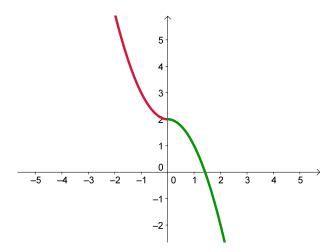


Figura 1.18: Representación gráfica de la función $f(x) = 2 - x \cdot |x|$

Vamos a responder ahora a los dos últimos apartados. De entrada, si $x \neq 0$ la función es derivable por tratarse de polinomios. Veamos que ocurre en x = 0.

Empecemos por estudiar la continuidad de f en dicho punto.

$$f(0) = 2$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (2 + x^{2}) = 2$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (2 - x^{2}) = 2$$

Luego existe el límite y coincide con el valor de la función en el punto. Por tanto, la función es continua en x = 0.

Estudiemos la derivada. Ya comentamos que es derivable en todo los puntos salvo quizás en x = 0. Al expresar cual es la derivada de entrada no incluimos el cero por si no es derivable.

$$f'(x) = \begin{cases} 2x & x < 0 \\ -2x & x > 0 \end{cases}$$

En consecuencia,

$$\begin{bmatrix} f'(0^-) = 0 \\ f'(0^+) = 0 \end{bmatrix} \Longrightarrow \exists f'(0) = 0$$

Luego la función es derivable en x = 0.

Por lo tanto la función derivada que nos piden en el tercer apartado es:

$$f'(x) = \begin{cases} 2x & x \le 0 \\ -2x & x > 0 \end{cases}$$

1.2.54.

a) Estudie el dominio de definición, las asíntotas, los extremos relativos y los puntos de inflexión de la función

$$f(x) = \frac{x^3}{(x-1)^2} \, .$$

b) Represente la función f(x) anterior utilizando los datos obtenidos en el apartado a).

(Septiembre 13)

- Solución:

Vamos a empezar por hacer el estudio que nos piden. Empecemos por el dominio.

Como es un cociente, el dominio de la función será todo \mathbb{R} menos los valores que anulen el denominador. Es obvio que el denominador se anula sólo en x = 1, por tanto:

$$Dom f = \mathbb{R} - \{1\}$$

Vamos ahora a calcular las asíntotas. Empecemos por las verticales. De presentar alguna asíntota vertical esa será la recta x = 1. Vamos a comprobarlo.

$$\lim_{x \to 1} \frac{x^3}{(x-1)^2} = \left[\frac{1}{0}\right] = \begin{cases} \lim_{x \to 1^-} \frac{x^3}{(x-1)^2} = +\infty \\ \lim_{x \to 1^+} \frac{x^3}{(x-1)^2} = +\infty \end{cases}$$

Luego la recta x = 1 es una asíntota vertical de la función.

Vamos a preparar la función para estudiar mejor las otras asíntotas.

$$f(x) = \frac{x^3}{(x-1)^2} = \frac{x^3}{x^2 - 2x + 1}$$

Comencemos por estudiar si tiene asíntotas horizontales.

$$\begin{split} &\lim_{x\to+\infty}\frac{x^3}{x^2-2x+1}=+\infty\\ &\lim_{x\to-\infty}\frac{x^3}{x^2-2x+1}=\lim_{x\to+\infty}\frac{-x^3}{x^2+2x+1}=-\infty \end{split}$$

Luego no tiene asíntotas horizontales. Veamos entonces si tiene oblicuas. Estudiemos primero que pasa cuando x tiende a $+\infty$.

$$m = \lim_{x \to +\infty} \frac{\frac{x^3}{x^2 - 2x + 1}}{x} = \lim_{x \to +\infty} \frac{x^3}{x^3 - 2x^2 + x} = 1$$

$$n = \lim_{x \to +\infty} \left(\frac{x^3}{x^2 - 2x + 1} - x\right) = \lim_{x \to +\infty} \frac{x^3 - (x^3 - 2x^2 + x)}{x^2 - 2x + 1} = \lim_{x \to +\infty} \frac{2x^2 - x}{x^2 - 2x + 1} = 2$$

Por tanto, cuando x tiende a $+\infty$ la recta y=x+2 es una asíntota oblicua de nuestra función. Hay que ver lo mismo cuando x tiende a $-\infty$.

$$m = \lim_{x \to -\infty} \frac{\frac{x^3}{x^2 - 2x + 1}}{x} = \lim_{x \to -\infty} \frac{x^3}{x^3 - 2x^2 + x} = \lim_{x \to +\infty} \frac{-x^3}{-x^3 - 2x^2 - x} = 1$$

$$n = \lim_{x \to -\infty} \left(\frac{x^3}{x^2 - 2x + 1} - x\right) = \lim_{x \to -\infty} \frac{x^3 - (x^3 - 2x^2 + x)}{x^2 - 2x + 1} = \lim_{x \to +\infty} \frac{2x^2 - x}{x^2 - 2x + 1} = 1$$

$$= \lim_{x \to +\infty} \frac{2x^2 + x}{x^2 + 2x + 1} = 2$$

Luego cuando x tiende a $-\infty$ tenemos la misma asíntota. Vamos a estudiar la derivada.

$$f'(x) = \frac{3x^2(x-1)^{\frac{1}{2}} - x^3 \cdot (x-1)}{(x-1)^{\frac{1}{2}}} = \frac{3x^2(x-1) - 2x^3}{(x-1)^3} = \frac{3x^3 - 3x^2 - 2x^3}{(x-1)^3} = \frac{x^3 - 3x^2}{(x-1)^3} = 0 \Longrightarrow \begin{bmatrix} x = 0 \\ x = 3 \end{bmatrix}$$

Vamos a estudiar el signo de la derivada para dilucidar los máximos y mínimos.

Luego hay un mínimo relativo en el punto $(3, f(3)) = \left(3, \frac{27}{4}\right)$. En x=1 no presenta ningún extremo relativo por no ser del dominio.

Vamos a hacer la segunda derivada.

$$f''(x) = \frac{(3x^2 - 6x)(x - 1)^{\frac{4}{9}} - 3(x^3 - 3x^2)(x - 1)^{\frac{2}{9}}}{(x - 1)^{\frac{4}{9}}} = \frac{3x^3 - 6x^2 - 3x^2 + 6x - 3x^3 + 9x^2}{(x - 1)^4} = \frac{6x}{(x - 1)^4} = 0 \Longrightarrow x = 0$$

Vamos a estudiar el signo de la segunda derivada.

	$(-\infty,0)$	(0,1)	$(1, +\infty)$
$\frac{6x}{(x-1)^4}$	_	+	+

Luego hay un punto de inflexión en el punto (0, f(0)) = (0, 0).

Por último vamos a poner la representación gráfica.

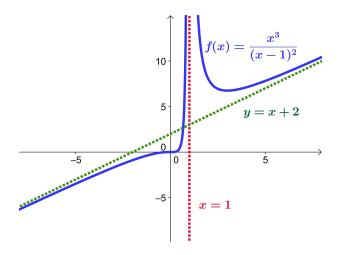


Figura 1.19: Representación gráfica de la función $f(x) = \frac{x^3}{(x-1)^2}$

1.2.55.

- a) Enuncie la condición que se debe cumplir para que una recta x=a sea asíntota vertical de una función f(x).
- b) Calcule las asíntotas verticales y horizontales (en $-\infty$ y en $+\infty$) de la función

$$f(x) = \frac{x^2 + x - 1}{x^2 - x - 2}.$$

(Junio 14)

- Solución:

La definición de asíntota vertical pedida podemos verla en cualquier libro.

En una función racional, las asíntotas verticales son rectas que vienen determinadas por las raíces del denominador.

En nuestro caso dichas raíces son:

$$x^2 - x - 2 = 0 \Longrightarrow \begin{vmatrix} x = -1 \\ x = 2 \end{vmatrix}$$

Emperemos por x = -1.

$$\lim_{x \to -1} \frac{x^2 + x - 1}{x^2 - x - 2} = \left[\frac{-1}{0} \right] \Longrightarrow \begin{vmatrix} \lim_{x \to -1^-} = -\infty \\ \lim_{x \to -1^+} = +\infty \end{vmatrix}$$

En consecuencia la recta x = -1 es una asíntota vertical. Seguimos por x = 2.

$$\lim_{x \to 2} \frac{x^2 + x - 1}{x^2 - x - 2} = \left[\frac{5}{0}\right] \Longrightarrow \begin{vmatrix} \lim_{x \to 2^-} = -\infty \\ \lim_{x \to 2^+} = +\infty \end{vmatrix}$$

En consecuencia la recta x = 2 es una asíntota vertical.

Veamos ahora las asíntotas horizontales. Tenemos que los límites son:

$$\lim_{x \to -\infty} \frac{x^2 + x - 1}{x^2 - x - 2} = 1 \qquad \qquad \lim_{x \to +\infty} \frac{x^2 + x - 1}{x^2 - x - 2} = 1$$

Luego la recta y = 1 es una asíntota horizontal.

1.2.56.

a) Estudie el dominio de definición, las asíntotas, los extremos relativos y los puntos de inflexión de la función

$$f(x) = \frac{(x+1)^3}{x^2}$$
.

b) Represente la función f(x) anterior utilizando los datos obtenidos en el apartado a).

(Julio 14)

- Solución:

Al tratarse de un cociente, habrá que excluir del dominio las raíces del denominador. Es obvio que el denominador se anula en x = 0, por tanto el dominio será:

$$Dom f = \mathbb{R} - \{0\}$$

Vamos ahora a estudiar las asíntotas. Las posibles asíntotas verticales están entre los valores que anulan el denominador. Vamos pues a ver si la recta x=0 es asíntota vertical de la función.

$$\lim_{x \to 0} \frac{(x+1)^3}{x^2} = \left[\frac{1}{0}\right] = \begin{bmatrix} \lim_{x \to 0^+} \frac{(x+1)^3}{x^2} = +\infty \\ \lim_{x \to 0^-} \frac{(x+1)^3}{x^2} = +\infty \end{bmatrix}$$

Luego la recta x=0 es asíntota vertical de la función. Veamos ahora si tiene asíntotas horizontales.

$$\lim_{x \to -\infty} \frac{(x+1)^3}{x^2} = -\infty$$

$$\lim_{x \to +\infty} \frac{(x+1)^3}{x^2} = +\infty$$

Luego no tiene asíntotas horizontales. Veamos entonces si tiene oblicuas.

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\frac{(x+1)^3}{x^2}}{x} = \lim_{x \to +\infty} \frac{(x+1)^3}{x^3} = 1$$

$$n = \lim_{x \to +\infty} (f(x) - mx) = \lim_{x \to +\infty} \left(\frac{(x+1)^3}{x^2} - x\right) = \lim_{x \to +\infty} \frac{3x^2 + 3x + 1}{x^2} = 3$$

Puede comprobarse que ocurre lo mismo cuando $x \to -\infty$, luego la recta y = x + 3 es asíntota oblicua en ambos infinitos.

Vamos a calcular las tres primeras derivada para buscar los extremos y los puntos de inflexión.

$$f'(x) = \frac{x^3 - 3x - 2}{x^3} \qquad f''(x) = \frac{6(x+1)}{x^4} \qquad f'''(x) = \frac{-18x - 24}{x^5}$$

Los valores que anulan la primera derivada son aquellos que anulen el numerador. Basta con resolver la ecuación de segundo grado que se obtiene para comprobar que x = -1 y x = 2 son dichos valores. Vamos a ver si son máximos o mínimos.

$$f''(-1) = 0 f''(2) = \frac{18}{16}$$

De aquí deducimos que la función presenta un mínimo relativo en x=2. Veremos que ocurre con la derivada tercera en x=-1.

$$f'''(-1) = 6 \neq 0$$

Por tanto en x = -1 la función tiene un punto de inflexión.

La representación gráfica que nos piden es:

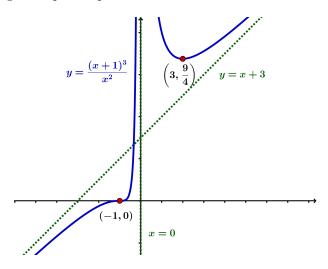


Figura 1.20: Representación gráfica de la función $f(x) = \frac{(x+1)^3}{x^2}$

1.2.57.

- a) Enuncie el teorema del valor medio de Lagrange.
- b) Aplicando el anterior teorema a la función $f(x) = \operatorname{sen} x$, pruebe que cualesquiera que sean los números reales a < b se cumple la desigualdad $\operatorname{sen} b \operatorname{sen} a \le b a$.

(Julio 14)

- Solución:

El enunciado del teorema que nos piden podemos encontrarlo en cualquier libro. Vamos a resolver el segundo apartado.

En nuestro caso vamos a tomar $f(x) = \operatorname{sen} x$. Tendremos que $f'(x) = \operatorname{cos} x$. Obviamente f es continua y derivable en todo $\mathbb R$, luego podemos aplicarle el teorema de Lagrange en cualquier intervalo de $\mathbb R$.

Tenemos, que según dicho teorema, en el intervalo $\left[a,b\right]$ existe un c que cumple:

$$\frac{\mathrm{sen}\ b - \mathrm{sen}\ a}{b - a} = \mathrm{cos}\ c$$

Si pasamos multiplicando el denominador y tenemos en cuenta que $|\cos\,x|\leqslant 1$ tendremos:

$$sen b - sen a = (b - a) \cdot cos c \leq b - a$$

1.3. Integral. Cálculo de áreas y volúmenes

1.3.1. Calcular, integrando por partes, el valor de

$$\int_{1}^{2} x^{2} \ln x dx$$

(Junio 00)

- Solución:

Vamos a comenzar calculando una primitiva por partes.

$$u = lnx \implies du = \frac{1}{x}dx$$

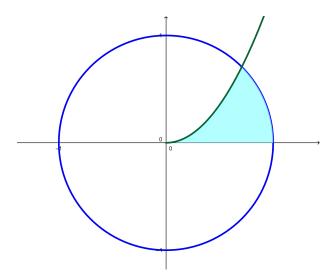
$$dv = x^2 dx \implies v = \frac{x^3}{3}$$

$$\int x^2 \ln x \, dx = \frac{x^3}{3} \ln x - \int \frac{x^{\frac{2}{3}}}{3} \cdot \frac{1}{\cancel{x}} \, dx = \frac{x^3}{3} \ln x - \frac{x^3}{9}$$

Luego:

$$\int_{1}^{2} x^{2} \ln x \, dx = \left[\frac{x^{3}}{3} \ln x - \frac{x^{3}}{9} \right]_{1}^{2} = \left(\frac{8}{3} \ln 2 - \frac{8}{9} \right) - \left(0 - \frac{1}{9} \right) = \frac{8}{3} \ln 2 - \frac{7}{9}$$

1.3.2. Calcular el área limitada por la parábola $y = \sqrt{2}x^2$, la circunferencia $x^2 + y^2 = 1$ y el eje OX, que aparece rayada en la figura .



(Junio 00)

- Solución:

Por lo que observamos en la figura del enunciado, nos piden que de la circunferencia consideremos la rama positiva, es decir, tomaremos $y = \sqrt{1-x^2}$.

Es obvio que el área hay que dividirla en dos trozos, como podemos ver en la figura 1.21.

Vamos a calcular los puntos de corte:

$$\sqrt{2}x^2 = \sqrt{1-x^2} \Longrightarrow 2x^4 = 1-x^2 \Longrightarrow 2x^4 + x^2 - 1 = 0$$

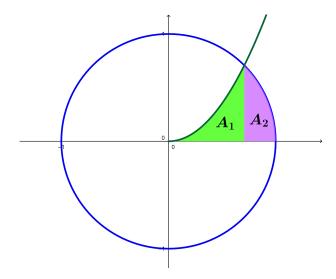


Figura 1.21: Representación detallada del área buscada

Se trata de una ecuación bicuadrada, por lo que hacemos $z=x^2$ y resolvemos.

$$z = \frac{-1 \pm \sqrt{1+8}}{4} = \frac{-1 \pm 3}{4} \Longrightarrow \begin{cases} z_1 = \frac{-1+3}{4} = \frac{1}{2} \Longrightarrow x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \\ z_2 = \frac{-1-3}{4} = -1 \Longrightarrow \text{ No vale.} \end{cases}$$

Luego el área buscada, según vemos en la figura 1.21 es:

$$A = A_1 + A_2 = \int_0^{\sqrt{2}/2} \sqrt{2}x^2 dx + \int_{\sqrt{2}/2}^1 \sqrt{1 - x^2} dx$$

Vamos a calcular cada una por separado, calculando previamente una primitiva en cada caso.

$$\int \sqrt{2}x^2 dx = \frac{\sqrt{2}}{3}x^3$$

Por tanto,

$$A_1 = \int_0^{\sqrt{2}/2} \sqrt{2}x^2 dx = \left[\frac{\sqrt{2}}{3}x^3\right]_0^{\sqrt{2}/2} = \frac{\sqrt{2}}{3} \cdot \frac{2\sqrt{2}}{8} = \frac{1}{6} u^2$$

Por otro lado tenemos:

$$\int \sqrt{1-x^2} dx$$

Vamos a utilizar el cambio x = sent para resolver la integral indefinida.

$$x = sent$$

$$dx = cost dt$$

$$\int \sqrt{1 - x^2} dx = \int \sqrt{1 - sen^2 t} \cos t dt = \int \cos^2 t dt$$

Si aquí cambiamos $cos^2t = \frac{1}{2} + \frac{cos2t}{2}$ tendríamos:

$$\int \left(\frac{1}{2} + \frac{\cos 2t}{2}\right) dt = \frac{1}{2}t + \frac{sen2t}{4} = \frac{1}{2}arcsenx + \frac{sen2(arcsenx)}{4}$$

Por tanto:

$$A_2 = \int_{\sqrt{2}/2}^{1} \sqrt{1 - x^2} dx = \left[\frac{1}{2} arcsenx + \frac{sen2(arcsenx)}{4} \right]_{\sqrt{2}/2}^{1} =$$
$$= \left(\frac{\pi}{4} + 0 \right) - \left(\frac{\pi}{8} + \frac{1}{4} \right) = \frac{\pi}{8} - \frac{1}{4} u^2$$

En consecuencia:

$$A = A_1 + A_2 = \frac{1}{6} + \frac{\pi}{8} - \frac{1}{4} = \frac{4 + 3\pi - 6}{24} = \frac{3\pi - 2}{24} u^2$$

1.3.3. Determinar una función f(x) cuya segunda derivada sea $f''(x) = xe^x$.

(Septiembre 00)

- Solución:

Habrá que calcular una primitiva de la función que nos dan, que será f' y posteriormente calcular otra primitiva de ésta, que será la función que buscamos. La integral se calcula por partes:

$$u = x$$
 ; $du = dx$
 $dv = e^x dx$; $v = e^x$

Por tanto:

$$f'(x) = \int xe^x dx = xe^x - \int e^x dx = xe^x - e^x$$

Hacemos de nuevo la integral de la función obtenida.

$$\int (xe^x - e^x) dx = \int xe^x dx - \int e^x dx = xe^x - e^x - e^x = xe^x - 2e^x$$

La función buscada es:

$$f(x) = xe^x - 2e^x$$

1.3.4. Calcular, con el cambio de variable $t^2 = x + 3$, el valor de:

$$\int_{1}^{6} \frac{x dx}{\sqrt{x+3}}$$

(Septiembre 00)

- Solución:

Vamos a calcular primero una primitiva utilizando el cambio indicado:

$$t^2 = x + 3 \implies x = t^2 - 3 \implies t = \sqrt{x + 3}$$

 $2tdt = dx$

Realizando la sustitución:

$$\int \frac{(t^2 - 3) 2t dt}{t} = \int \frac{2t^3 - 6t}{t} dt = \int (2t^2 - 6) dt = \frac{2t^3}{3} - 6t = \frac{2\sqrt{(x+3)^3}}{3} - 6\sqrt{x+3}$$

En consecuencia:

$$\int_{1}^{6} \frac{xdx}{\sqrt{x+3}} = \left[\frac{2\sqrt{(x+3)^3}}{3} - 6\sqrt{x+3} \right]_{1}^{6} = \left(\frac{54}{3} - 18 \right) - \left(\frac{16}{3} - 12 \right) = 0$$

$$=\frac{54-54-16+36}{3}=\frac{20}{3}$$

1.3.5. Determinar una constante positiva a sabiendo que la figura plana limitada por la parábola $y=3ax^2+2x$, la recta y=0 y la recta x=a tiene área $(a^2-1)^2$.

(Junio 01)

- Solución:

La figura 1.22 nos muestra una visión gráfica del problema planteado.

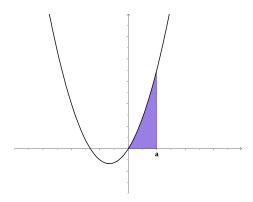


Figura 1.22: Representación detallada del área buscada

Como a > 0 la función $y = 3ax^2 + 2x$ corta al Eje X en x = 0 y en $x = -\frac{2}{3a}$ (que será un número negativo).

Luego el área buscada es la que aparece sombreada en la figura 1.22. Por tanto, tenemos que:

$$\int_0^a (3ax^2 + 2x)dx = (a^2 - 1)^2$$

Ahora bien,

$$\int_0^a (3ax^2 + 2x)dx = \left[ax^3 + x^2\right]_0^a = a^4 + a^2$$

En consecuencia:

$$a^{4} + a^{2} = (a^{2} - 1)^{2}$$

$$a^{4} + a^{2} = a^{4} + 1 - 2a^{2}$$

$$3a^{2} = 1$$

$$a^{2} = \frac{1}{3}$$

$$a = \pm \sqrt{\frac{1}{3}}$$

Como tiene que ser positivo el valor de a, tenemos que $a=\sqrt{\frac{1}{3}}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$

1.3.6. Calcular el valor de:

$$\int_0^1 \frac{x dx}{e^{x^2}}$$

(puede hacerse con el cambio de variable $t=-x^2$ y con el cambio de variable $t=x^2$).

(Junio 01)

Vamos a calcular una primitiva. Para ello vamos a utilizar el cambio $t=x^2$.

$$t = x^2 \Longrightarrow dt = 2xdx$$

Sustituyendo tenemos:

$$\int \frac{1}{2e^t} dt = \frac{-1}{2}e^{-t} = \frac{-1}{2}e^{-x^2}$$

Por tanto:

$$\int_0^1 \frac{x dx}{e^{x^2}} = \left[\frac{-1}{2}e^{-x^2}\right]_0^1 = \frac{-1}{2e} + \frac{1}{2}$$

1.3.7. Representar gráficamente el recinto plano limitado por la curva $y = x^3 - x$ y su tangente en el punto de abscisa x = 1. Calcular su área

(Septiembre 01)

- Solución:

Vamos a calcular primero la recta tangente. Vamos a calcularla mediante la ecuación puntopendiente. El punto lo obtenemos sustituyendo en la función x por 1. Dicho punto será P(1,0).

La pendiente de la recta tangente se obtiene sustituyendo en la derivada de la función:

$$f'(x) = 3x^2 - 1 \Longrightarrow m_{tg} = f'(1) = 3 - 1 = 2$$

La ecuación de la recta será:

$$y-0=2(x-1) \Longrightarrow y=2x-2$$

A continuación representaremos la zona que nos piden. Para pintar la recta basta con hacer una tabla de valores, pero para pintar la función será mejor estudiar su derivada. Vamos a calcularla y estudiaremos su signo para ver el crecimiento y los máximos y mínimos.

$$f'(x) = 3x^2 - 1 \Longrightarrow 3x^2 - 1 = 0 \Longrightarrow x^2 = \frac{1}{3} \Longrightarrow x = \pm \frac{\sqrt{3}}{3}$$

Estudiamos el signo:

Luego:

- Crece $\longrightarrow (-\infty, -\sqrt{3}/3) \cup (\sqrt{3}/3, +\infty)$.
- Decrece $\longrightarrow (-\sqrt{3}/3, \sqrt{3}/3)$.
- Máximo $\longrightarrow (-\sqrt{3}/3, 0'38)$.
- Mínimo $\longrightarrow (\sqrt{3}/3, -0'38)$.

Es evidente que se trata de una función impar y por tanto corta en el (0,0). La representación gráfica podemos verla en la figura 1.23.

Vamos ahora a calcular el área. Hallamos los puntos de corte de la función y la recta.

$$x^{3} - x = 2x - 2 \Longrightarrow x^{3} - 3x + 2 = 0$$

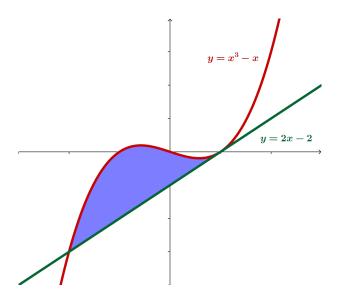


Figura 1.23: Representación detallada del área buscada

Buscamos una raiz por Ruffini.

Calculamos después las otras dos:

$$x^{2} + x - 2 = 0 \Longrightarrow x = \frac{-1 \pm \sqrt{1+8}}{2} = \frac{-1 \pm 3}{2} = \begin{cases} x = 1 \\ x = -2 \end{cases}$$

Luego los límites de integración son x = -2 y x = 1. Vamos a calcular el área.

$$A = \int_{-2}^{1} \left[\left(x^3 - x \right) - \left(2x - 2 \right) \right] dx = \int_{-2}^{1} \left(x^3 - 3x + 2 \right) dx = \left[\frac{x^4}{4} - \frac{3x^2}{2} + 2x \right]_{-2}^{1} =$$

$$= \left(\frac{1}{4} - \frac{3}{2} + 2 \right) - \left(\cancel{4} - 6 - \cancel{4} \right) = \frac{1}{4} - \frac{3}{2} + 8 = \frac{1 - 6 + 32}{4} = \frac{27}{4} u^2$$

1.3.8. Definir el concepto de primitiva de una función y explicar su relación con el concepto de integral definida.

(Septiembre 01)

- Solución:

La solución a este ejercicio podemos verla en cualquier libro.

1.3.9. Representar gráficamente la figura plana limitada por las parábolas $y=4-x^2$, $y=x^2-4$. Calcular su área.

(Junio 02)

- Solución:

Las funciones que nos dan son dos parábolas cuyas representaciones gráficas podemos verla en la figura 1.24.

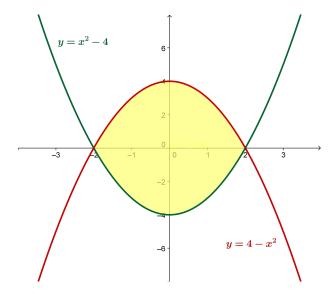


Figura 1.24: Representación gráfica de la región pedida.

Vamos a calcular los puntos corte.

$$x^2 - 4 = 4 - x^2 \Longrightarrow 2x^2 - 8 = 0 \Longrightarrow x^2 = 4 \Longrightarrow x = \pm 2$$

Calculemos ahora el área:

$$A = \int_{-2}^{2} \left[(4 - x^2) - (x^2 - 4) \right] dx = \int_{-2}^{2} \left(-2x^2 + 8 \right) dx = \left[\frac{-2x^3}{3} + 8x \right]_{-2}^{2} =$$
$$= \left(\frac{-16}{3} + 16 \right) - \left(\frac{16}{3} - 16 \right) = 32 - \frac{32}{3} = \frac{64}{3} u^2$$

1.3.10. Calcular el valor de la integral

$$\int_0^1 x e^{-x} dx$$

(Junio 02)

- Solución:

Vamos a calcular primero una primitiva. Esta integral hay que resolverla por partes.

$$u = x$$
 ; $du = dx$
 $dv = e^{-x} dx$: $v = -e^{-x}$

Por tanto:

$$\int x e^{-x} dx = -xe^{-x} + \int e^{-x} dx = -xe^{-x} - e^{-x}$$

Retomamos la definida y tenemos:

$$\int_0^1 x \, e^{-x} \, dx = \left[-xe^{-x} - e^{-x} \right]_0^1 = \left(-e^{-1} - e^{-1} \right) + 1 = \frac{-2}{e} + 1 = \frac{e-2}{e}$$

1.3.11. Representa gráficamente el recinto plano limitado, en la región donde la coordenada x es positiva, por la recta x=1, la hiperbola xy=1, y la recta 6y-x+1=0. Calcula su área.

(Septiembre 02)

- Solución:

Vamos a representar la región pedida haciendo una tabla de valores para cada caso:

a) Para la hipérbola xy = 1 valdría:

b) Para la recta bastarían dos puntos:

$$\begin{array}{c|cc} x & 0 & 3 \\ \hline y & -1/6 & 1/3 \end{array}$$

La representación gráfica podemos verla en la figura 1.25.

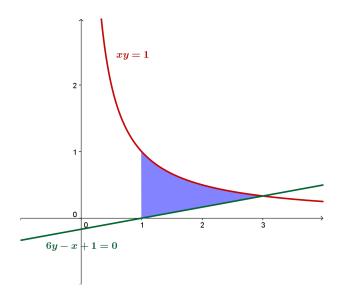


Figura 1.25: Representación gráfica de la región pedida.

Vamos a buscar los puntos de corte de las dos gráficas.

Resolviendo la ecuación tenemos:

$$y = \frac{-1 \pm \sqrt{1 + 24}}{12} = \frac{-1 \pm 5}{12} = \begin{cases} y = -\frac{1}{2} \\ y = \frac{1}{3} \end{cases}$$

Sustituyendo cada valor de y obtenemos uno de x.

$$y=-rac{1}{2} \implies x=-3+1=-2 \Longrightarrow$$
 No nos sirve. $y=rac{1}{3} \implies x=2+1=3.$

Por tanto, mis límites de integración son x = 1 y x = 3.

Observando la figura 1.25, podemos calcular el área de la siguiente forma:

$$\int_{1}^{3} \left(\frac{1}{x} - \frac{x-1}{6}\right) dx = \left[\ln x - \frac{x^{2}}{12} + \frac{x}{6}\right]_{1}^{3} = \left(\ln 3 - \frac{9}{12} + \frac{6}{12}\right) - \left(0 - \frac{1}{12} + \frac{2}{12}\right) =$$

$$= \ln 3 - \frac{4}{12} = \ln 3 - \frac{1}{3} u^{2}$$

1.3.12. Calcular una primitiva de la función $f(x) = (x^2 + 1)^{-1} x$ que se anule en x = 2.

(Septiembre 02)

- Solución:

Vamos a calcular la integral indefinida y despues calcularemos el valor de la constante que hace que se anule en x = 2.

$$\int \frac{x}{x^2 + 1} dx = \frac{1}{2} ln (x^2 + 1) + k$$

Si hacemos x = 2 resulta:

$$\frac{1}{2}ln5 + k = 0 \Longrightarrow k = -ln\sqrt{5}$$

1.3.13. Representar gráficamente el recinto plano limitado por la recta y = x - 2 y la parábola de ecuación $y^2 = x$. Calcular su área.

(Junio 03)

- Solución:

Son funciones suficientemente conocidas, por lo que con una tabla de valores se pueden representar. Sólo hay que tener en cuenta que de la parábola hay que considerar las dos ramas. La representación pedida la podemos ver en la figura 1.26.

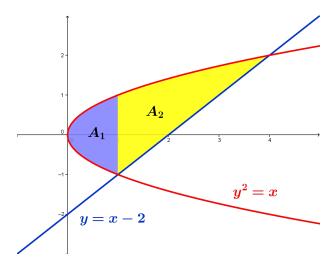


Figura 1.26: Representación gráfica de la región pedida.

Vamos a hallar los puntos de corte.

$$y^{2} = x$$

$$y = x - 2$$

$$\Rightarrow x = (x - 2)^{2} \Rightarrow x = x^{2} - 4x + 4 \Rightarrow x^{2} - 5x + 4 = 0 \Rightarrow$$

$$\Rightarrow x = \frac{5 \pm \sqrt{25 - 16}}{2} = \frac{5 \pm 3}{2} \Rightarrow \begin{cases} x = 4 \\ x = 1 \end{cases}$$

Vamos a calcular el área. Observando la gráfica de la figura 1.26 vemos que hay que descomponer el área en dos trozos $(A_1 \text{ y } A_2)$.

$$A = A_1 + A_2 = \int_0^1 \left[\sqrt{x} - (-\sqrt{x}) \right] dx + \int_1^4 \left[\sqrt{x} - (x - 2) \right] dx = \int_0^1 2\sqrt{x} dx +$$

$$+ \int_1^4 \left[\sqrt{x} - x + 2 \right] dx = \left[\frac{4\sqrt{x^3}}{3} \right]_0^1 + \left[\frac{2\sqrt{x^3}}{3} - \frac{x^2}{2} + 2x \right]_1^4 = \frac{4}{3} + \left(\frac{16}{3} - \frac{16}{2} + 8 \right) -$$

$$- \left(\frac{2}{3} - \frac{1}{2} + 2 \right) = \frac{4}{3} + \frac{16}{3} - \frac{16}{2} + 8 - \frac{2}{3} + \frac{1}{2} - 2 = \frac{8 + 32 - 48 + 48 - 4 + 3 - 12}{6} = \frac{27}{6} u^2.$$

1.3.14. Calcular el valor de la siguiente integral, donde ln denota el logaritmo neperiano:

$$\int_{e}^{e^2} \frac{dx}{x(lnx)}$$

(Junio 03)

- Solución:

Vamos a calcular primero una primitiva. Para eso vamos a hacer el cambio:

$$\begin{array}{rcl}
t & = & lnx \\
dt & = & \frac{1}{x}dx
\end{array}$$

Tenemos por tanto

$$\int \frac{dx}{xlnx} = \int \frac{dt}{t} = ln|t| = ln|ln|x||$$

Por tanto:

$$\int_{e}^{e^{2}} \frac{dx}{x(lnx)} = \left[\ln|\ln|x|| \right]_{e}^{e^{2}} = \ln|\ln|e^{2}| - \ln|\ln|e| = \ln 2 - \ln 1 = \ln 2$$

1.3.15. Calcular el valor de la integral (puede hacerse con el cambio de variable $t=e^{-x}$):

$$\int_0^1 \frac{dx}{e^x + 1}$$

 $(Septiembre\ 03)$

Vamos a calcular primero una primitiva. Aplicamos el cambio aconsejado:

$$t = e^{-x} \implies e^x = \frac{1}{t}$$

$$dt = -e^{-x} dx \implies dx = \frac{-dt}{t}$$

$$\int \frac{dx}{e^x + 1} = \int \frac{-dt}{t \left(\frac{1}{t} + 1\right)} = -\int \frac{dt}{1 + t} = -\ln|1 + t| = -\ln|1 + e^{-x}|$$

Por tanto:

$$\int_{0}^{1} \frac{dx}{e^{x} + 1} = \left[-\ln\left| 1 + e^{-x} \right| \right]_{0}^{1} = -\ln\left(1 + \frac{1}{e} \right) + \ln 2$$

1.3.16. Representar gráficamente la figura plana limitada por la curva $y = e^x$, su recta tangente en el punto de abcisa x = 0, y la recta x = 1. Calcular su área.

(Septiembre 03)

- Solución:

Vamos a calcular en primer lugar la ecuación de la recta tangente a la curva en x = 0. Sabemos que dicha recta pasa por $(0, e^0) = (0, 1)$ y que su pendiente es $m_{tq} = f'(0) = e^0 = 1$.

Por tanto la ecuación de dicha recta es:

$$y-1=1(x-0) \Longrightarrow y=x+1$$

La representación gráfica podemos verla en la figura 1.27.

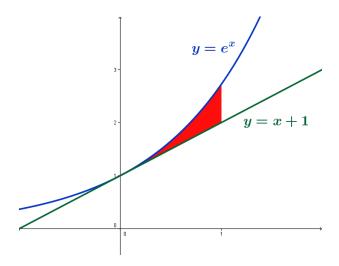


Figura 1.27: Representación gráfica de la región pedida.

En la gráfica puede verse que no hay más punto de corte que x=0, por tanto el área que queremos es:

$$A = \int_0^1 \left[e^x - (x+1) \right] dx = \int_0^1 (e^x - x - 1) dx = \left[e^x - \frac{x^2}{2} - x \right]_0^1 = \left(e - \frac{1}{2} - 1 \right) - 1 =$$
$$= e - \frac{5}{2} u^2.$$

1.3.17. Definir el concepto de primitiva de una función. ¿Existe alguna primitiva de la función $f(x)=x^{-1}$ que no tome ningún valor positivo en el intervalo $1 \le x \le 2$?

(Junio 04)

- Solución:

El concepto teórico puede encontrarse en cualquier libro. Vayamos a lo práctico.

Tenemos la función $f(x) = x^{-1} = \frac{1}{x}$.

Si hayamos las primitivas de la función nos sale:

$$\int \frac{1}{x} dx = \ln x + k$$

La gráfica de y = lnx podemos verla en la figura 1.28.

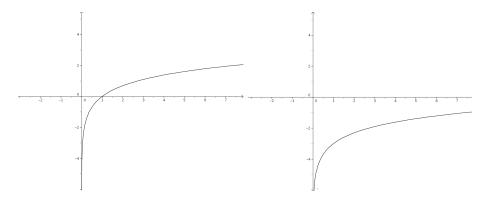


Figura 1.28: Gráfica de y=ln x y de y=ln x-3

Como sabemos, k desplaza verticalmente dicha gráfica, por tanto, si a k le doy, por ejemplo, el valor -3, es decir, f(x) = lnx - 3, la gráfica se desplazará 3 unidades hacia abajo, resultando la gráfica de la derecha de la figura 1.28.

Hay que tener en cuenta que la función y = lnx es una función creciente y que ln1 = 0 y ln2 = 0'693147..., por tanto y = lnx - 3 será negativa en todo el intervalo (Observar la gráfica de la derecha la figura 1.28). De hecho bastaría con tomar k < -ln2.

1.3.18. Representa gráficamente el recinto plano limitado, en la región donde la abcisa x es positiva, por la curva $y=x^3+x$, y por la recta y=2x. Calcular el área.

(Junio 04)

- Solución:

Tenemos que las funciones que encierran el área son $y=x^3+x$ é y=2x. Para representar $y=x^3+x$ bastará con calcular sus máximos y mínimos, los puntos de corte con lo ejes y, si es necesario, una tabla de valores.

Vamos a empezar hallando los puntos de corte con el eje X haciendo y=0.

$$x^3 + x = 0 \Longrightarrow \left\{ \begin{array}{l} x = 0 \\ x^2 + 1 = 0 \Longrightarrow \text{No tiene solución} \end{array} \right.$$

Vamos a ver donde se anula su derivada:

$$y' = 3x^2 + 1 \Longrightarrow 3x^2 + 1 = 0 \Longrightarrow$$
 No tiene solución

La gráfica de las dos funciones podéis verla en la gráfica 1.29

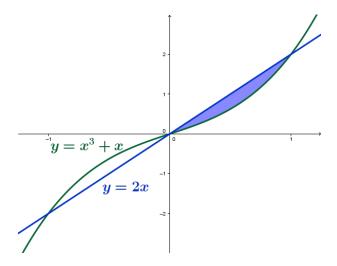


Figura 1.29: Visión gráfica del problema

Vamos a hallar los puntos de corte de las dos funciones:

$$x^{3} + x = 2x \Longrightarrow x^{3} - x = 0 \Longrightarrow x \cdot (x^{2} - 1) = 0 \Longrightarrow \begin{cases} x = 0. \\ x^{2} - 1 = 0 \Longrightarrow x = \pm 1. \end{cases}$$

Vamos a calcular el área, que será el comprendida entre 0 y 1 por las dos funciones. Como la recta está por encima ponemos:

$$A = \int_0^1 \left[2x - \left(x^3 + x \right) \right] dx = \int_0^1 \left(x - x^3 \right) dx = \left[\frac{x^2}{2} - \frac{x^4}{4} \right]_0^1 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4} u^2$$

1.3.19. Representar gráficamente la figura plana limitada en el primer cuadrante $(x \ge 0, y \ge 0)$ por la recta y = x y la curva $x = y^3$. Calcular su área.

(Septiembre 04)

- Solución:

Tenemos que $(x \ge 0, y \ge 0)$, es decir, el primer cuadrante. Tenemos también la función y = x y la función $x = y^3 \Longrightarrow y = \sqrt[3]{x}$.

El área que queremos calcular es la que nos muestra la figura 1.30. Buscamos los puntos de corte de ambas funciones:

$$x = \sqrt[3]{x} \Longrightarrow x^3 = x \Longrightarrow x^3 - x = 0 \Longrightarrow \begin{cases} x = 0 \\ x^2 - 1 = 0 \Longrightarrow x = \pm 1 \end{cases}$$

Como $x \ge 0; y \ge 0$, sobra la raiz x = -1 y tenemos que:

$$A = \int_0^1 \left(\sqrt[3]{x} - x\right) dx = \int_0^1 \left(x^{\frac{1}{3}} - x\right) dx = \left[\frac{x^{\frac{4}{3}}}{\frac{4}{3}} - \frac{x^2}{2}\right]_0^1 = \left[\frac{3x^{\frac{4}{3}}}{4} - \frac{x^2}{2}\right]_0^1 = \frac{3}{4} - \frac{1}{2} = \frac{1}{4} u^2$$

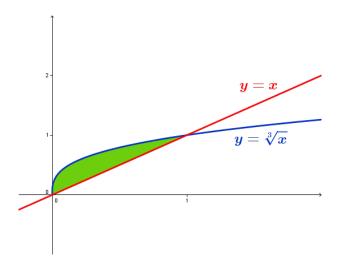


Figura 1.30: Representación detallada

1.3.20. Calcular el valor de la siguiente integral:

$$\int_{1}^{2} x \sqrt[3]{x^{2} - 1} dx$$

(puede hacerse con el cambio de variable $x^2 - 1 = t^3$.

(Septiembre 04)

- Solución:

Vamos a resolver primero la indefinida.

Hacemos el cambio que nos recomiendan:

$$t^3 = x^2 - 1 \implies t = \sqrt[3]{x^2 - 1}$$
$$3t^2 dt = 2x dx$$

Por tanto:

$$\int x\sqrt[3]{x^2-1}dx = \frac{1}{2}\int 3t^2\sqrt[3]{t^3}dt = \frac{3}{2}\int t^3dt = \frac{3}{2}\frac{t^4}{4} + k = \frac{3\sqrt[3]{(x^2-1)^4}}{8} + k$$

En consecuencia tendríamos:

$$\int_{1}^{2} x \sqrt[3]{x^{2} - 1} dx = \left[\frac{3\sqrt[3]{(x^{2} - 1)^{4}}}{8} \right]_{1}^{2} = \frac{3\sqrt[3]{81}}{8} = \frac{9\sqrt[3]{3}}{8}$$

1.3.21. Representar gráficamente el recinto plano limitado por las curvas $y = e^x$, $y = e^{-x}$, y por la recta x = 1. Calcular su área.

(Junio 05)

- Solución:

Vamos a representar las funciones haciendo una tabla de valores:

$$y = e^x \Longrightarrow \frac{x -2 -1 0 1 2}{y e^{-2} e^{-1} 1 e e^2}$$

$$y = e^{-x} \Longrightarrow \frac{x \begin{vmatrix} -2 & -1 & 0 & 1 & 2 \\ y \end{vmatrix} e^2 e 1 e^{-1} e^{-2}}$$

La representación gráfica y el área buscada la vemos en la figura 1.31.

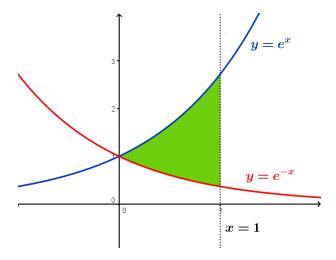


Figura 1.31: Área encerrada por las exponenciales y x=1.

Vamos a encontrar los puntos de corte:

$$e^x = e^{-x} \Longrightarrow \frac{e^x}{e^{-x}} = 1 \Longrightarrow e^x \cdot e^x = 1 \Longrightarrow e^{2x} = 1 = e^0 \Longrightarrow 2x = 0 \Longrightarrow x = 0$$

Luego los límites de integración son x = 0 y x = 1. Por tanto:

$$\int_0^1 (e^x - e^{-x}) dx = \left[e^x + e^{-x} \right]_0^1 = \left(e^1 + e^{-1} \right) - (1+1) =$$

$$= e + \frac{1}{e} - 2 = \frac{e^2 + 1 - 2e}{e} u^2$$

1.3.22. Calcular el valor de la siguiente integral:

$$\int_{1}^{e} \frac{\ln x}{x^2} dx$$

(puede hacerse por partes).

(Junio 05)

- Solución:

Vamos a resolver la integral como nos indican, por partes. Para ello vamos a derivar el logaritmo y a integrar el polinomio.

$$u = lnx \implies du = \frac{1}{x}dx$$

$$dv = \frac{1}{r^2} dx \implies v = \frac{-1}{r}$$

Vamos a empezar por encontrar una primitiva:

$$\int \frac{\ln x}{x^2} dx = \frac{-\ln x}{x} - \int \frac{-1}{x} \cdot \frac{1}{x} dx = \frac{-\ln x}{x} + \int \frac{1}{x^2} dx = \frac{-\ln x}{x} - \frac{1}{x} = \frac{-\ln x - 1}{x}$$

Por tanto:

$$\int_{1}^{e} \frac{\ln x}{x^{2}} dx = \left[\frac{-\ln x - 1}{x} \right]_{1}^{e} = \frac{-\ln e - 1}{e} - \frac{-\ln 1 - 1}{1} = \frac{-2}{e} + 1$$

1.3.23. Calcular una primitiva de la función $f(x) = (x+1)^2 x^{-1/2}$ que se anule en x = 1.

(Septiembre 05)

- Solución:

Tenemos que nuestra función es:

$$f(x) = (x+1)^2 x^{-1/2} = \frac{(x+1)^2}{\sqrt{x}} = \frac{x^2 + 2x + 1}{\sqrt{x}} = x^{3/2} + 2x^{1/2} + x^{-1/2}$$

Vamos a calcular la integral indefinida:

$$\int (x^{3/2} + 2x^{1/2} + x^{-1/2})dx = \frac{2x^{5/2}}{5} + \frac{4x^{3/2}}{3} + 2x^{1/2} + k$$

Según el enunciado tiene que anularse en x=1, por tanto:

$$\frac{2}{5} + \frac{4}{3} + 2 + k = 0 \Longrightarrow k = -\frac{2}{5} - \frac{4}{3} - 2 = \frac{-6 - 20 - 30}{15} = \frac{-56}{15}$$

La primitiva buscada es:

$$F(x) = \frac{2x^{5/2}}{5} + \frac{4x^{3/2}}{3} + 2x^{1/2} - \frac{56}{15}$$

1.3.24. Representar gráficamente el recinto plano limitado por la recta x-y=1 y por la curva de ecuación $y=\sqrt{x-1}$. Calcular su área.

(Septiembre 05)

- Solución:

Ambas funciones son conocidas y su representación puede hacerse por una sencilla tabla de valores que voy a omitir. Tras eso la representación gráfica podemos verla en la figura 1.32.

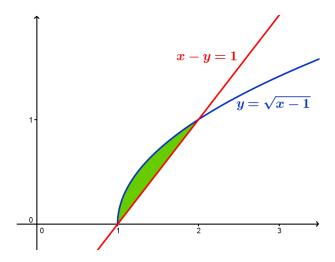


Figura 1.32: Representación detallada del área buscada

A continuación vamos a calcular el área encerrada por las dos funciones. Empezaremos por calcular los puntos de corte para delimitar los límites de integración.

$$\sqrt{x-1} = x-1$$

 $x-1 = (x-1)^2$
 $x-1 = x^2 - 2x + 1$

$$-x^2 + 3x - 2 = 0 \Longrightarrow \begin{cases} x = 1 \\ x = 2 \end{cases}$$

Por tanto el área quedaría:

$$A = \int_{1}^{2} \left[\sqrt{x - 1} - (x - 1) \right] dx = \left[\frac{2\sqrt{(x - 1)^{3}}}{3} - \frac{x^{2}}{2} + x \right]_{1}^{2} =$$

$$= \left(\frac{2}{3} - 2 + 2 \right) - \left(-\frac{1}{2} + 1 \right) = \frac{2}{3} + \frac{1}{2} - 1 = \frac{4 + 3 - 6}{6} = \frac{1}{6} u^{2}$$

1.3.25. Representa gráficamente la figura plana limitada por la curva $y = x^4$, su recta tangente en el punto (1,1) y el eje OY. Calcular su área.

(Junio 06)

- Solución:

La función $y=x^4$ es de fácil representación, basta con dar algunos valores. Vamos a calcular la recta tangente que nos piden y posteriormente realizaremos la representación de la zona buscada.

Sabemos que la pendiente de dicha recta es la derivada de la función en el punto, por tanto:

$$f'(x) = 4x^3 \Longrightarrow m_{tq} = f'(1) = 4$$

Como la recta pasa por el punto (1,1) y tiene la pendiente anterior, tenemos que la recta buscada es:

$$y-1=4(x-1) \Longrightarrow y-1=4x-4 \Longrightarrow y=4x-3$$

En consecuencia, la representación gráfica de ambas funciones y la zona pedida la podemos ver en la figura 1.33.

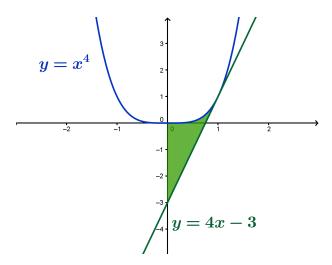


Figura 1.33: Representación gráfica de la región pedida.

Vamos a calcular el área que nos piden:

$$\int_0^1 \left[x^4 - (4x - 3) \right] dx = \left[\frac{x^5}{5} - 2x^2 + 3x \right]_0^1 = \frac{1}{5} - 2 + 3 = \frac{6}{5} u^2$$

1.3.26. Halla una primitiva de la función $f(x) = xe^x$.

(Junio 06)

- Solución:

Es una integral típica para resolverla por partes, en la que tenemos que derivar el polinomio e integrar la exponencial.

$$u = x ; du = dx$$
$$dv = e^x dx ; v = e^x$$
$$\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x$$

No es necesario terminar el resultado sumando una constante pues nos piden una primitiva, no todas.

1.3.27. Enuncia la regla de Barrow. Representa la gráfica de la función

$$f(x) = \int_{1}^{x} t dt$$

(Septiembre 06)

- Solución:

La regla de Barrow puede verse en cualquier libro.

Vamos a calcular cual es nuestra función:

$$f(x) = \int_{1}^{x} t dt = \left[\frac{t^{2}}{2} \right]_{1}^{x} = \frac{x^{2}}{2} - \frac{1}{2} = \frac{1}{2}x^{2} - \frac{1}{2}$$

De su ecuación deducimos que se trata de una parábola. Para representarla vamos a calcular la coordenada x del vértice y haremos una tabla de valores.

Coordenada x del vértice
$$\longrightarrow x = \frac{-b}{2a} = \frac{0}{1} = 0$$

La tabla de valores que utilizaremos es:

La representación gráfica la tenemos en la figura 1.34

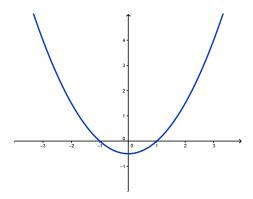


Figura 1.34: Representación gráfica de la función $f(x) = \frac{1}{2}x^2 - \frac{1}{2}$

1.3.28. Representa la figura plana limitada por la gráfica de la función f(x) = cosx, en el intervalo $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, y por la recta $y = \frac{1}{2}$. Calcular su área.

(Septiembre 06)

- Solución:

La representación del área pedida no es complicada, pues se suponen conocidas ambas funciones. Dicha representación la encontramos en la figura 1.35.

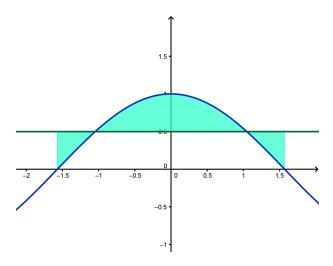


Figura 1.35: Representación gráfica de la región pedida.

Vamos a encontrar los puntos de corte que nos dirán cuales son los límites de integración.

$$cosx = \frac{1}{2} \Longrightarrow x = \pm \frac{\pi}{3}$$

Para hallar el área consideramos la función $g(x) = cos x - \frac{1}{2}$. Vamos a calcular una primitiva de dicha función.

$$G(x) = \int \left(\cos x - \frac{1}{2}\right) dx = \sin x - \frac{x}{2}$$

Sustituimos en los distintos puntos que tenemos resultando:

$$G\left(\frac{-\pi}{3}\right) = sen\left(\frac{-\pi}{3}\right) - \frac{\frac{-\pi}{3}}{2} = \frac{-\sqrt{3}}{2} + \frac{\pi}{6} = -0'3424$$

$$G\left(\frac{\pi}{3}\right) = sen\left(\frac{\pi}{3}\right) - \frac{\frac{\pi}{3}}{2} = \frac{\sqrt{3}}{2} - \frac{\pi}{6} = 0'3424$$

Para calcular el área hacemos:

$$G\left(\frac{\pi}{3}\right) - G\left(\frac{-\pi}{3}\right) = 0'3424 + 0'3424 = 0'6848$$

Y el área buscada será:

$$A = 0'6848 \ u^2$$

1.3.29. Representa gráficamente el recinto plano limitado por las parábolas $y=1-x^2$ e $y=2x^2$ y calcula su área.

- Solución:

Vamos a representar las dos parábolas. Para ello empezamos por calcular sus vértices y hacemos después sendas tablas de valores.

$$- y = 1 - x^{2}$$

$$x_{v} = \frac{-b}{2a} = \frac{0}{-2} = 0$$

$$-2x^{2}$$

$$x_{v} = \frac{-b}{2a} = \frac{0}{-4} = 0$$

Luego sus representaciones gráficas son:

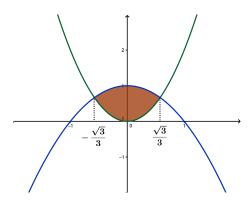


Figura 1.36: Representación gráfica de la región pedida.

Vamos a hallar los puntos de corte para calcular el área:

$$2x^2 = 1 - x^2 \Longrightarrow 3x^2 = 1 \Longrightarrow x^2 = \frac{1}{3} \Longrightarrow x = \pm \sqrt{\frac{1}{3}} = \pm \frac{\sqrt{3}}{3}$$

Luego el área pedida es:

$$A = \int_{-\frac{\sqrt{3}}{3}}^{\frac{\sqrt{3}}{3}} \left(1 - x^2 - 2x^2\right) dx = \int_{-\frac{\sqrt{3}}{3}}^{\frac{\sqrt{3}}{3}} \left(1 - 3x^2\right) = \left[x - x^3\right]_{-\frac{\sqrt{3}}{3}}^{\frac{\sqrt{3}}{3}} =$$

$$= \frac{\sqrt{3}}{3} - \frac{3\sqrt{3}}{27} - \left(\frac{-\sqrt{3}}{3} + \frac{3\sqrt{3}}{27}\right) = \frac{2\sqrt{3}}{3} - \frac{6\sqrt{3}}{27} = \frac{18\sqrt{3} - 6\sqrt{3}}{27} = \frac{12\sqrt{3}}{27} = \frac{4\sqrt{3}}{9}u^2$$

1.3.30. Calcula el valor de la integral

$$\int_{3}^{10} (x-2)^{1/3} dx$$

(Junio 07)

$$\int_{3}^{10} (x-2)^{1/3} dx = \left[\frac{3(x-2)^{4/3}}{4} \right]_{3}^{10} = \left[\frac{3\sqrt[3]{(x-2)^4}}{4} \right]_{3}^{10} = \left[\frac{3(x-2)\sqrt[3]{(x-2)}}{4} \right]_{3}^{10} =$$

$$= \frac{24\sqrt[3]{8}}{4} - \frac{3\sqrt[3]{1}}{4} = \frac{48}{4} - \frac{3}{4} = \frac{45}{4}$$

1.3.31. Representa gráficamente la figura plana limitada por la curva $y = 2x^3$, su recta tangente en el origen de coordenadas y la recta x = 2. Calcula su área.

(Septiembre 07)

- Solución:

La representación gráfica de la región pedida está en la figura 1.37. Vamos a calcular la recta tangente en x = 0. Sabemos que la ecuación de la recta tangente es:

$$y - f(x_0) = f'(x_0)(x - x_0)$$

Empezamos por calcular la pendiente:

$$f'(x) = 6x \Longrightarrow m_{tq} = f'(0) = 0$$

Además tenemos que f(0) = 0.

Luego la recta tangente es y = 0.

Para la función hacemos una tabla de valores que aqui omitimos.

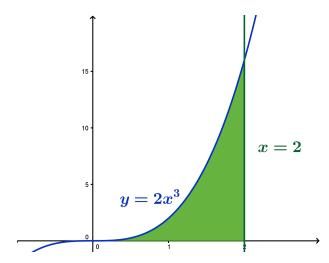


Figura 1.37: Representación gráfica de la región pedida.

Vamos a calcular el área. En la gráfica podemos ver marcada la región a la que queremos calcularle el área.

$$A = \int_0^2 2x^3 dx = \left[\frac{x^4}{2}\right]_0^2 = \frac{16}{2} - 0 = 8u^2$$

1.3.32.

- a) Enuncia el Teorema del Valor Medio del Cálculo Integral.
- b) Calcula el punto al que se refiere dicho teorema para la función $f(x) = 3x^2 + 1$ en el intervalo [0,3]

(Septiembre 07)

- Solución:

- a) La parte teórica puede encontrarse en cualquier libro.
- b) Vamos a ver cuanto vale la integral.

$$\int_0^3 (3x^2 + 1) dx = \left[x^3 + x\right]_0^3 = 30 - 0 = 30$$

Vamos a buscar el valor pedido.

$$f(c)(3-0) = 30 \Longrightarrow (3c^2+1) \cdot 3 = 30 \Longrightarrow 9c^2+3=30 \Longrightarrow$$

$$\Longrightarrow 9c^2=27 \Longrightarrow c^2=3 \Longrightarrow c=\pm\sqrt{3}$$

De los dos valores sólo nos sirve $c = \sqrt{3}$, pues el otro no pertenece al intervalo (0,3).

1.3.33. Calcula el valor de la siguiente integral (puede hacerse con el cambio de variable t = ln(x))

$$\int_{1}^{e} \frac{1}{x\left(1 + \ln(x)\right)} dx$$

donde ln denota el logaritmo neperiano.

(Junio 08)

- Solución:

Para resolver la integral empezaremos por calcular una primitiva. Realizamos el cambio aconsejado.

$$t = ln(x) \implies dt = \frac{1}{x}dx$$

Luego:

$$\int \frac{1}{x(1+ln(x))} dx = \int \frac{1}{1+t} dt = \ln(1+t) = \ln(1+lnx)$$

Por tanto:

$$\int_{1}^{e} \frac{1}{x(1 + \ln(x))} dx = \left[\ln(1 + \ln(x))\right]_{1}^{e} = \left(\ln(1 + \ln(e)) - \ln(1 + \ln(1))\right) = \ln(2) - \ln(1) = \ln(2)$$

1.3.34.

- a) Representa gráficamente el recinto plano limitado por la recta y+2x-6=0 y la parábola $y=-x^2+2x+3$.
- b) Calcula su área.

(Junio 08)

a) Vamos a hacer una tabla de valores para la recta:

$$\begin{array}{c|cc} x & 0 & 2 \\ \hline y & 6 & 2 \end{array}$$

Vamos a calcular una tabla de valores para la parábola. Para ello empezamos por calcular su vértices y hacemos después dicha tabla de valores.

$$x_v = \frac{-b}{2a} = \frac{-2}{-2} = 1$$

La representación gráfica es:

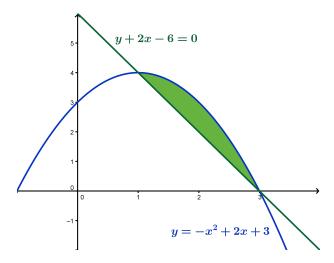


Figura 1.38: Representación gráfica de la región pedida.

b) Vamos a calcular el área. Para ello empezaremos por calcular los puntos de corte de las dos gráficas:

$$\begin{vmatrix} y + 2x - 6 &= 0 \\ y &= -x^2 + 2x + 3 \end{vmatrix} \implies \begin{vmatrix} y &= -2x + 6 \\ y &= -x^2 + 2x + 3 \end{vmatrix} \implies -2x + 6 = -x^2 + 2x + 3$$

Luego:

$$x^2 - 4x + 3 = 0$$

Resolviendo la ecuación obtenemos:

$$x = \frac{4 \pm \sqrt{16 - 12}}{2} = \frac{4 \pm 2}{2} = \begin{cases} \frac{4+2}{2} = 3\\ \frac{4-2}{2} = 1 \end{cases}$$

Vamos a resolver la integral.

$$A = \int_{1}^{3} \left[\left(-x^{2} + 2x + 3 \right) - \left(-2x + 6 \right) \right] dx = \int_{1}^{3} \left(-x^{2} + 4x - 3 \right) dx =$$

$$= \left[-\frac{x^3}{3} + 2x^2 - 3x \right]_1^3 = (-9 + 18 - 9) - \left(-\frac{1}{3} + 2 - 3 \right) =$$

$$= \frac{1}{3} - 2 + 3 = \frac{1 - 6 + 9}{3} = \frac{4}{3}u^2$$

1.3.35. Calcula la función f(x) cuya gráfica pasa por el punto (0,1) (es decir, f(0)=1) y que tiene como derivada la función $f'(x)=\frac{2x}{x^2+1}$.

(Septiembre 08)

- Solución:

Vamos a calcular la integral indefinida de f'(x) y luego le impondremos a la función obtenida que pase por el punto (0,1) para calcular el valor de la constante.

$$\int \frac{2x}{x^2+1} dx = \ln\left(x^2+1\right) + K$$

Por tanto, como f(0) = 1, tenemos:

$$ln1 + K = 1 \Longrightarrow K = 1$$

Luego la función buscada es:

$$f(x) = ln(x^2 + 1) + 1$$

1.3.36.

- a) Define el concepto de primitiva de una función.
- b) Di, razonando la respuesta, si las funciones $F_1(x) = sen^2 x$ y $F_2(x) = -cos^2 x$ son primitivas de una misma función.

(Septiembre 08)

- Solución:

La respuesta al primer apartado puede encontrarse en cualquier libro de texto, por lo que pasaremos a resolver la segunda.

Vamos a calcular las derivadas de $F_1(x)$ y de $F_2(x)$ y veremos si coinciden.

$$F_1'(x) = 2 \cdot senx \cdot cosx$$

$$F_2'(x) = 2 \cdot (-\cos x) \cdot (-\sin x) = 2 \cdot \sin x \cdot \cos x$$

Por tanto, ambas funciones son primitivas de una misma función.

1.3.37.

- a) Exprese $f(x) = x \cdot |x|$ como una función definida a trozos y dibuje su gráfica de forma aproximada.
- b) Calcule la integral definida $\int_{-1}^{1} x \cdot |x| dx$.
- c) Calcule el área del recinto plano limitado por la gráfica de f(x), el eje \mathbf{OX} , la recta x=-1 y la recta x=1.

- Solución:

Respondemos a las tres cuestiones.

a) Si tenemos en cuenta que:

$$|x| = \begin{cases} x & si \quad x \ge 0 \\ -x & si \quad x < 0 \end{cases}$$

tenemos que

$$f(x) = x \cdot |x| = \begin{cases} x^2 & si \quad x \ge 0\\ -x^2 & si \quad x < 0 \end{cases}$$

Por tanto su gráfica la vemos en la figura 1.39

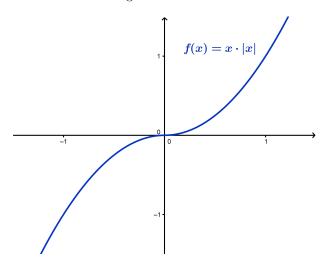


Figura 1.39: Representación gráfica de la función $f(x) = x \cdot |x|$.

b) La integral definida de una función definida a trozos tiene que tener en cuenta los dos trozos, por tanto:

$$\int_{-1}^{1} f(x)dx = \int_{-1}^{0} -x^{2}dx + \int_{0}^{1} x^{2}dx = \left[\frac{-x^{3}}{3}\right]_{-1}^{0} + \left[\frac{x^{3}}{3}\right]_{0}^{1} =$$
$$= \left[0 - \frac{1}{3}\right] + \left[\frac{1}{3} - 0\right] = -\frac{1}{3} + \frac{1}{3} = 0$$

c) El área que estamos buscando podemos verla en la figura 1.40: El área será por tanto:

$$A = \left| \int_{-1}^{0} -x^{2} dx \right| + \left| \int_{0}^{1} x^{2} dx \right| = \left| -\frac{1}{3} \right| + \left| \frac{1}{3} \right| = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

1.3.38.

- a) Escriba la fórmula, o regla, de integración por partes.
- b) Aplíquela para calcular la siguiente integral indefinida

$$\int x^2 cosx dx$$

(Junio 09)

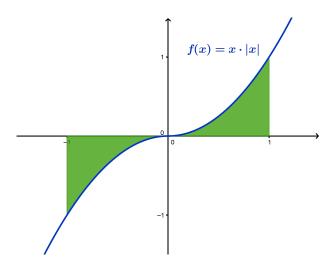


Figura 1.40: Representación gráfica del área buscada.

La respuesta al primer apartado puede encontrarse en cualquier libro. Vamos a resolver la segunda cuestión.

Es una integral en la que habrá que aplicar la integral por parte dos veces. En ambos casos derivaremos el polinomio e integraremos la función trigonométrica.

$$u = x^2$$
 \Rightarrow $du = 2xdx$

 $dv = cosxdx \Rightarrow v = senx$

Sustituyendo tenemos:

$$\int x^2 \cos x dx = x^2 \sin x - \int 2x \sin x dx = x^2 \sin x - 2 \int x \sin x dx = (*)$$

Volvemos a aplicar la integración por partes.

$$u = x$$
 \Rightarrow $du = dx$ $dv = senx dx$ \Rightarrow $v = -cosx$

Sustituyendo, de nuevo, tenemos.

$$(*) = x^{2}senx - 2\left[-xcosx - \int -cosx dx\right] = x^{2}senx - 2\left[-xcosx + \int cosx dx\right]$$
$$= x^{2}senx + 2xcosx - 2senx + k$$

- 1.3.39. Dada la parábola de ecuación $y = -x^2 2x + 3$, sea r su recta tangente en x = -1 y sea s su recta tangente en x = 1.
 - a) Calcule las ecuaciones de r y de s.
 - b) Represente, de forma aproximada, el recinto plano limitado por la parábola, la recta r y la recta s.
 - c) Calcule el área de dicho recinto.

- Solución:

Vamos a empezar por calcular las rectas r y s. Comencemos por r. Para ello vamos a calcular la pendiente (que será el valor de la derivada en x = -1) y el punto por el que pasa P(-1, y(1)).

$$y'(x) = -2x - 2 \Rightarrow y'(-1) = 2 - 2 = 0$$

A su vez tenemos que y(1) = -1 + 2 + 3 = 4. Por tanto $m_r = 0$ y P(-1, 4).

En consecuencia la ecuación de la recta r es:

$$y-4=0(x+1) \Rightarrow y=4$$

Vamos a calcular ahora la ecuación de s. Análogamente a la recta r tenemos:

$$y'(1) = -2 - 2 = -4$$

y tenemos que y(1) = 1 - 2 + 3 = 0. Luego $m_s = -4$ y Q(1,0).

Por tanto la ecuación de la recta s es:

$$y - 0 = -4(x - 1) \Rightarrow y = -4x + 4$$

Pasemos al segundo apartado. Vamos a representar el recinto que nos piden. Para representar la parábola vamos a calcular la coordenada x del vértice:

$$x_v = \frac{-b}{2a} = \frac{2}{-2} = -1$$

Vamos a calcular una tabla de valores:

Para las rectas basta con una tabla de valores con sólo dos valores:

lacksquare Recta r:

La tabla de valores podría ser

$$\begin{array}{c|cc} x & -1 & 1 \\ \hline y & 4 & 4 \end{array}$$

 \blacksquare Recta s:

La tabla de valores podría ser

$$\begin{array}{c|cc} x & -1 & 1 \\ \hline y & 8 & 0 \end{array}$$

La zona pedida podemos verla en la gráfica 1.41.

Vamos a calcular el área que nos piden en el último apartado. Si observamos la gráfica anterior podemos ver que hay dos zonas delimitadas.

Una en el intervalo [-1,0] y definida por las funciones $y=-x^2-2x+3$ y por la función y=4. A esta zona la llamaremos A_1 .

La otra en el intervalo [0,1] y definida por las funciones $y = -x^2 - 2x + 3$ y por la función y = -4x + 4. A esta zona la llamaremos A_2 .

Vamos a ver los puntos de corte que observamos gráficamente.

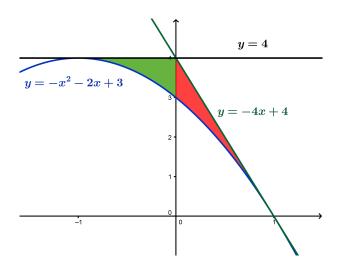


Figura 1.41: Representación gráfica del área buscada.

• Puntos de corte de las funciones $y = -x^2 - 2x + 3$ e y = 4.

$$-x^{2} - 2x + 3 = 4 \Rightarrow -x^{2} - 2x - 1 = 0 \Rightarrow x^{2} + 2x + 1 = 0 \Rightarrow (x+1)^{2} = 0 \Rightarrow x = -1$$

■ Puntos de corte de las funciones $y = -x^2 - 2x + 3$ e y = -4x + 4.

$$-x^{2}-2x+3=-4x+4 \Rightarrow -x^{2}+2x+1=0 \Rightarrow x^{2}-2x+1=0 \Rightarrow (x-1)^{2}=0 \Rightarrow x=1$$

■ Puntos de corte de las funciones y = 4 e y = -4x + 4.

$$-4x + 4 = 4 \Rightarrow -4x = 0 \Rightarrow x = 0$$

El área que queremos calcular es $A=A_1+A_2$. Vamos a calcular A_1 y A_2 .

$$A_1 = \int_{-1}^{0} \left[4 - \left(-x^2 - 2x + 3 \right) \right] dx = \int_{-1}^{0} \left(x^2 + 2x + 1 \right) dx =$$

$$= \left[\frac{x^3}{3} + x^2 + x \right]_{-1}^{0} = 0 - \left(-\frac{1}{3} + 1 - 1 \right) = \frac{1}{3} u^2$$

$$A_2 = \int_{-1}^{0} \left[-4x + 4 - \left(-x^2 - 2x + 3 \right) \right] dx = \int_{-1}^{0} \left(x^2 - 2x + 1 \right) dx =$$

$$= \left[\frac{x^3}{3} - x^2 + x \right]_{-1}^{0} = \left(\frac{1}{3} - 1 + 1 \right) - 0 = \frac{1}{3} u^2$$

Luego:

$$A = A_1 + A_2 = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}u^2$$

1.3.40.

a) Calcule una primitiva de la función racional

$$f(x) = \frac{1}{1 - x^2}$$

b) Calcule la integral $\int \frac{1}{\cos x} dx$ (puede utilizarse el cambio de variable t = senx).

(Septiembre 09)

- Solución:

Vamos a calcular la integral de esa función. Es obvio que se trata de la integral de una función racional con raices simples $[1-x^2=(1-x)(1+x)]$.

$$\frac{1}{1-x^2} = \frac{A}{1-x} + \frac{B}{1+x} = \frac{A(1+x) + B(1-x)}{1-x^2}$$

Luego:

$$A(1+x) + B(1-x) = 1 \qquad \forall x \in \mathbb{R}$$

Por tanto, dando a x los valores 1 y -1 tenemos:

$$x = 1 \Rightarrow 2A = 1 \Rightarrow A = \frac{1}{2}$$

 $x = -1 \Rightarrow -2B = 1 \Rightarrow B = -\frac{1}{2}$

En consecuencia:

$$\int \frac{1}{1-x^2} \, dx = \int \frac{\frac{1}{2}}{1-x} \, dx + \int \frac{-\frac{1}{2}}{1+x} \, dx = -\frac{1}{2} ln|1-x| - \frac{1}{2} ln|1+x| + k$$

La primitiva que nos piden podría ser:

$$F(x) = -\frac{1}{2}ln|1 - x| - \frac{1}{2}ln|1 + x|$$

Vamos a calcular la otra integral que nos piden aplicando el cambio aconsejado:

$$t = senx \Rightarrow t^2 = sen^2x \Rightarrow 1 - t^2 = cos^2x \Rightarrow cosx = \sqrt{1 - t^2}$$

$$dt = cosxdx \Rightarrow dx = \frac{dt}{\sqrt{1 - t^2}}$$

Luego:

$$\int \frac{1}{\sqrt{1-t^2}} \cdot \frac{dt}{\sqrt{1-t^2}} = \int \frac{1}{1-t^2} dt$$

Ahora bien, $1 - t^2 = (1 - t)(1 + t)$. Por tanto:

$$A(1+t) + B(1-t) = 1 \qquad \forall t \in \mathbb{R}$$

Sustituyendo t = 1 y t = -1, tenemos:

$$t = 1 \Rightarrow 2A = 1 \Rightarrow A = \frac{1}{2}$$

$$t = -1 \Rightarrow -2B = 1 \Rightarrow b = -\frac{1}{2}$$

En consecuencia:

$$\int \frac{1}{1-t^2} dt = \int \frac{\frac{1}{2}}{1-t} dt + \int \frac{-\frac{1}{2}}{1+t} dt = -\frac{1}{2} \ln|1-t| - \frac{1}{2} \ln|1+t| + k$$

Si deshacemos el cambio tendremos:

$$\int \frac{1}{\cos x} dx = -\frac{1}{2} ln|1 - senx| - \frac{1}{2} ln|1 + senx| + k$$

1.3.41.

a) Represente, de forma aproximada, la recta x=1 y las curvas $y=\frac{x^2}{2},\ y=\frac{4}{x},\ y$ señale el recinto plano limitado por ellas.

b) Calcule el área de dicho recinto.

(Junio 10 - Fase general)

- Solución:

a) La primera curva es una parábola cuyo vértice tiene abcisa 0. Haciendo una tabla de valores como la que sigue tendremos bastante para su representación:

La segunda curva es una hipérbola. Haciendo, igualmente, una tabla de valores bastaría.

Vamos a representar la recta y las dos curvas, resultando el recinto pedido como podemos ver en la gráfica:

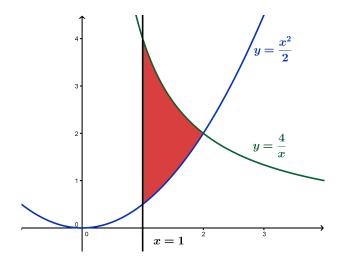


Figura 1.42: Representación gráfica de las funciones $\frac{x^2}{2}$ y $\frac{4}{x}$

b) El punto de corte de las dos curvas podemos observarlo en la gráfica anterior, así como en las dos tablas de valores, pero vamos a calcularlo analíticamente.

$$\frac{x^2}{2} = \frac{4}{x} \Longrightarrow x^3 = 8 \Longrightarrow x = 2$$

Por tanto el área buscada es:

$$A = \int_{1}^{2} \left(\frac{4}{x} - \frac{x^{2}}{2}\right) dx = \left[4lnx - \frac{x^{3}}{6}\right]_{1}^{2} = \left(4ln2 - \frac{8}{6}\right) - \left(4ln1 - \frac{1}{6}\right) =$$

$$= 4ln2 - \frac{8}{6} + \frac{1}{6} = 4ln2 - \frac{7}{6}u^{2}$$

1.3.42.

- a) Diga cuándo una función F(x) es primitiva de otra función f(x).
- b) Calcule una primitiva F(x) de la función $f(x) = xe^{x^2}$ que cumpla F(0) = 0.

(Junio 10 - Fase general)

- Solución:

El primer apartado lo podemos encontrar en cualquier libro.

Para resolver el segundo vamos a comenzar por resolver la integral indefinida y posteriormente calcularemos la constante para que F(0) = 0.

Es una integral prácticamente inmediata, aunque podemos resolverla haciendo el cambio de variable $u=x^2$.

$$u = x^2 \Longrightarrow du = 2xdx \Longrightarrow xdx = \frac{du}{2}$$

Tenemos que

$$\int xe^{x^{2}}dx = \frac{1}{2} \int e^{u}du = \frac{1}{2}e^{u} + k$$

Deshaciendo el cambio obtenemos

$$G(x) = \frac{1}{2}e^{x^2} + k$$

Por último vamos a encontrar el valor de k que buscamos para que se cumpla que F(0) = 0.

$$F(0) = \frac{1}{2}e^{0} + k = \frac{1}{2} + k = 0 \Longrightarrow k = -\frac{1}{2}$$

En consecuencia, la primitiva buscada es:

$$G(x) = \frac{1}{2}e^{x^2} - \frac{1}{2}$$

1.3.43. Calcule, utilizando la fórmula de integración por partes, una primitiva F(x) de la función $f(x)=x^2e^{-x}$ que cumpla F(0)=0.

(Junio 10 - Fase específica)

- Solución:

Vamos a resolver primero la integral indefinida y luego ya calcularemos la que cumple que F(0) = 0. Para ello vamos a aplicar la integración por partes dos veces.

$$u = x^{2} \implies du = 2xdx$$

$$dv = e^{-x}dx \implies v = -e^{-x}$$

$$u = x \implies du = dx$$

$$dv = e^{-x}dx \implies v = -e^{-x}$$

$$(2)$$

80 1. Análisis

Tenemos aplicando la integración

$$\int x^{2}e^{-x}dx \stackrel{(1)}{=} -x^{2}e^{-x} - \int -2xe^{-x}dx = -x^{2}e^{-x} + 2\int xe^{-x}dx =$$

$$\stackrel{(2)}{=} -x^{2}e^{-x} + 2\left(-xe^{-x} - \int -e^{-x}dx\right) = -x^{2}e^{-x} - 2xe^{-x} +$$

$$+ 2\int e^{-x}dx = -x^{2}e^{-x} - 2xe^{-x} - 2e^{-x} + k =$$

$$= e^{-x}\left(-x^{2} - 2x - 2\right) + k$$
(1.2)

Estas son todas las primitivas. Vamos a buscar aquella que cumpla que F(0) = 0.

$$F(0) = e^{0}(0 - 0 - 2) + k = -2 + k = 0 \Longrightarrow k = 2$$

En consecuencia la función buscada es

$$F(x) = e^{-x} \left(-x^2 - 2x - 2 \right) + 2$$

1.3.44.

- a) Represente, de forma aproximada, la curva $y = x^4 + 2x^2 + 1$ y la recta tangente a dicha curva en el punto $Q_0 = (-1, 4)$.
- b) Señale el recinto plano limitado por el eje OY y por la curva y la recta del apartado anterior, y calcule el área de dicho recinto.

(Junio 10 - Fase específica)

- Solución:

Vamos a empezar calculando la recta tangente. Sabemos que la fórmula para hallarla es:

$$y - f(a) = f'(a) \cdot (x - a)$$

Calculemos ahora el valor de la derivada de la función en x = -1.

$$f'(x) = 4x^3 + 4x \Longrightarrow f'(-1) = -4 - 4 = -8$$

Luego la recta tangente pedida es:

$$y - 4 = -8(x + 1) \Longrightarrow y - 4 = -8x - 8 \Longrightarrow y = -8x - 4$$

Para representar la función podemos estudiar su monotonía, sus extremos relativos y sus cortes con los ejes.

- Corte con los ejes:
 - Eje X $\Longrightarrow y = 0$. Tenemos que $x^4 + 2x^2 + 1 = 0$ es una ecuación bicuadrada. En consecuencia:

$$x^2 = \frac{-2 \pm \sqrt{4 - 4}}{2} = -1$$

Por tanto no corta al eje X.

• Eje Y $\Longrightarrow x = 0$ En este caso corta en el punto (0, 1) ■ Vamos a estudiar la derivada:

$$y' = 4x^3 + 4x \implies x(4x^2 + 1) = 0 \Longrightarrow x = 0$$

 $y'' = 12x^2 + 4 \implies y''(0) = 4 > 0$

Luego hay un mínimo relativo en (0,1)

Vamos a estudiar la monotonía:

$$\begin{array}{c|cccc} & (-\infty,0) & (0,+\infty) \\ \hline 4x^3 + 4x & - & + \\ & \searrow & \nearrow \end{array}$$

Luego crece en $(0, +\infty)$ y decrece en $(-\infty, 0)$.

Para poder completar la gráfica sería bueno hacer una tabla de valores, que aquí omitimos por su facilidad.

Vamos a hacer la representación que nos piden en el segundo apartado y de esa forma hacemos las dos que nos piden. La gráfica pedida podemos verla en la gráfica 1.43:

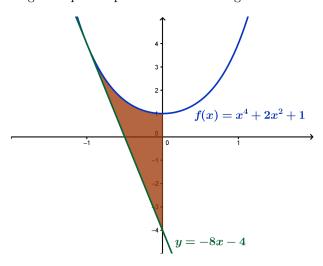


Figura 1.43: Representación del área requerida

Vista la gráfica tenemos que el área buscada es:

$$A = \int_{-1}^{0} \left[\left(x^4 + 2x^2 + 1 \right) - \left(-8x - 4 \right) \right] dx = \int_{-1}^{0} \left(x^4 + 2x^2 + 8x + 5 \right) dx =$$

$$= \left[\frac{x^5}{5} + \frac{2x^3}{3} + 4x^2 + 5x \right]_{-1}^{0} = 0 - \left(-\frac{1}{5} - \frac{2}{3} + 4 - 5 \right) =$$

$$= \frac{1}{5} + \frac{2}{3} - 4 + 5 = \frac{3 + 10 - 60 + 75}{15} = \frac{28}{15}u^2$$

1.3.45. Calcule el valor de la integral

$$\int_{1}^{2} \left(\frac{x-1}{8}\right)^{2/3} dx$$

(Septiembre 10 - Fase general)

82 1. Análisis

Esta integral es inmediata. Vamos a resolverla:

$$\int_{1}^{2} \left(\frac{x-1}{8}\right)^{\frac{2}{3}} dx = 8 \int_{1}^{2} \frac{1}{8} \left(\frac{x-1}{8}\right)^{\frac{2}{3}} dx = 8 \left[\frac{3}{5} \left(\frac{x-1}{8}\right)^{\frac{5}{3}}\right]_{1}^{2} =$$

$$= 8 \left(\frac{3}{5} \left(\frac{1}{8}\right)^{\frac{5}{3}} - 0\right) = \frac{24}{5} \sqrt[3]{\left(\frac{1}{8}\right)^{5}} = \frac{24}{5} \cdot \frac{1}{32} = \frac{3}{20}$$

1.3.46.

- a) Represente, de forma aproximada, el recinto plano limitado por la parábola $y=2x^2$ y la parábola $y=x^2+4$.
- b) Calcule el área de dicho recinto.

(Septiembre 10 - Fase general)

- Solución:

Representaremos primero las dos parábolas. Para hacerlo vamos a calcular sus vértices y dos tablas de valores:

$$y = x^2 + 4 \Longrightarrow x_v = \frac{-b}{2a} = 0$$

$$x \mid 0 -1 \quad 1 \quad -2 \quad 2$$

$$y \mid 0 \quad 5 \quad 5 \quad 8 \quad 8$$

La representación gráfica pedida podemos verla en la figura 1.44

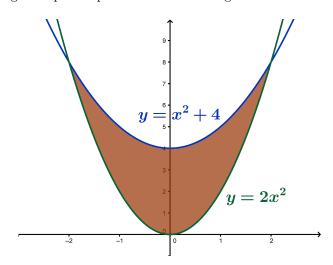


Figura 1.44: Representación de la región requerida

Calculemos ahora el área que nos piden. En la propia gráfica y en las tablas vemos los puntos de corte, pero vamos a calcularlos.

$$2x^2 = x^2 + 4 \Longrightarrow x^2 = 4 \Longrightarrow x = \pm 2$$

Luego el área es:

$$A = \int_{-2}^{2} (x^2 + 4 - 2x^2) dx = \int_{-2}^{2} (-x^2 + 4) dx = \left[-\frac{x^3}{3} + 4x \right]_{-2}^{2} =$$

$$= \left(-\frac{8}{3} + 8 \right) - \left(\frac{8}{3} - 8 \right) = -\frac{8}{3} + 8 - \frac{8}{3} + 8 = \frac{-8 + 24 - 8 + 24}{3} = \frac{32}{3}u^2$$

1.3.47. Considere las funciones $f(x) = sen^2 x$ y

$$g(x) = \int_0^x \frac{1}{2(1-t)} dt, \ 0 < x < 1$$

Calcule la derivada de la función $F(x)=g(f(x)), \ \frac{-\pi}{2} < x < \frac{\pi}{2}.$ Simplifique en lo posible dicha derivada.

(Septiembre 10 - Fase específica)

- Solución:

Vamos a encontrar primero g(x).

$$g(x) = \left[-\frac{1}{2} \ln |1 - t| \right]_0^x = -\frac{1}{2} \ln |1 - x| \qquad 0 < x < 1$$

Por tanto

$$F(x) = g(f(x)) = g(sen^2x) = -\frac{1}{2}ln(1 - sen^2x) = -\frac{1}{2}ln(cos^2x) = -ln cosx$$

Vamos a realizar la derivada:

$$f'(x) = -\frac{-senx}{cosx} = tgx$$

1.3.48.

- a) Represente, de forma aproximada, la figura plana limitada por la hipérbola xy = 1, su recta tangente en el punto (1,1) y la recta x = 2
- b) Calcule el área de dicha región plana.

(Septiembre 10 - Fase específica)

- Solución:

La función dada es $y = \frac{1}{x}$. La recta tangente la calcularemos usando la fórmula

$$y - f(a) = f'(a) \cdot (x - a)$$

Ahora bien

$$y' = -\frac{1}{r^2} \Longrightarrow y'(-1) = -1$$

Por tanto la citada recta tangente es

$$y-1=-1(x-1) \Longrightarrow y=-x+1+1 \Longrightarrow y=-x+2$$

La representación que nos piden es:

84 1. Análisis

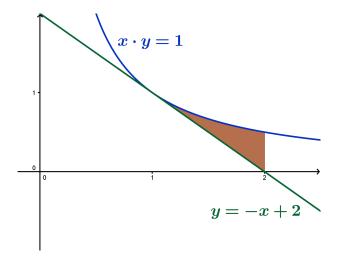


Figura 1.45: Representación de la región requerida

Para hallar el área tenemos que el único punto de corte es donde la recta es tangente a la hipérbola, es decir, en x = 1. Si observamos la gráfica 1.45 el área buscada es:

$$A = \int_{1}^{2} \left[\frac{1}{x} - (-x+2) \right] dx = \int_{1}^{2} \left(\frac{1}{x} + x - 2 \right) dx = \left[\ln x + \frac{x^{2}}{2} - 2x \right]_{1}^{2} =$$

$$= (\ln 2 + 2 - 4) - \left(\ln 1 + \frac{1}{2} - 2 \right) = \ln 2 - 2 - \frac{1}{2} + 2 = \left(\ln 2 - \frac{1}{2} \right) u^{2}$$

1.3.49. Calcule las primitivas de la función

$$f(x) = \frac{1}{e^x - e^{-x}}, \ x > 0$$

(Puede utilizarse el cambio de variable $t = e^x$.)

(Septiembre 10 - Fase específica)

- Solución:

Vamos a prepararla un poco antes de resolverla por sustitución.

$$\int \frac{1}{e^x - e^{-x}} dx = \int \frac{1}{e^x - \frac{1}{e^x}} dx = \int \frac{1}{\frac{(e^x)^2 - 1}{e^x}} = \int \frac{e^x}{(e^x)^2 - 1} dx$$

Hacemos el cambio $t=e^x \Longrightarrow dt=e^x dx.$ Luego:

$$\int \frac{e^x}{(e^x)^2 - 1} = \int \frac{1}{t^2 - 1} \, dt$$

Hay que resolverla por fracciones simples:

$$\frac{1}{t^2-1} = \frac{A}{t+1} + \frac{B}{t-1} = \frac{A(t-1) + B(t+1)}{(t+1)(t-1)}$$

luego,

$$A(t-1) + B(t+1) = 1$$
 $\forall t \in \mathbb{R}$

Si
$$t = 1 \implies 2B = 1 \Longrightarrow B = \frac{1}{2}$$

Si
$$t = -1 \implies -2A = 1 \Longrightarrow A = -\frac{1}{2}$$

luego:

$$\int \frac{1}{t^2 - 1} dt = \int \frac{-\frac{1}{2}}{t + 1} dt + \int \frac{\frac{1}{2}}{t - 1} dt = -\frac{1}{2} ln |t + 1| + \frac{1}{2} ln |t - 1| + k$$

Deshaciendo el cambio tenemos:

$$\int \frac{1}{e^x - e^{-x}} dx = -\frac{1}{2} ln |e^x + 1| + \frac{1}{2} ln |e^x - 1| + k$$

1.3.50.

- a) Represente, de forma aproximada, la figura plana limitada por la curva $y = -2(x-1)^3$, su recta tangente en el punto (1,0) y la recta x=0 (Puede ser útil calcular los cortes de la curva $y=-2(x-1)^3$ con los ejes coordenados.)
- b) Calcule el área de dicha figura plana.

(Junio 11)

- Solución:

Vamos a empezar por calcular la ecuación de la recta tangente que nos piden: La recta tangente tiene como ecuación:

$$y - f(x_0) = f'(x_0)(x - x_0)$$

Vamos a calcular la derivada:

$$f(x) = -2(x-1)^3 \Longrightarrow f'(x) = -6(x-1)^2$$

Por tanto:

$$f'(1) = 0$$

La recta buscada es:

$$y - 0 = 0(x - 1) \Longrightarrow y = 0$$

Para representar f(x) además de estudiar los puntos de corte con los ejes, vamos a estudiar su derivada y su segunda derivada.

Al eje X lo corta en el punto (1,0) y al eje Y en el punto (0,2)

Vamos pues a estudiar la derivada de f(x).

$$f'(x) = -6(x-1)^2 = 0 \Longrightarrow x-1 = 0 \Longrightarrow x = 1$$

Vamos a estudiar el signo de la derivada:

$$\begin{array}{c|ccccc} & (-\infty,1) & (1,+\infty) \\ \hline -6(x-1)^2 & - & - \\ & \searrow & \searrow \end{array}$$

Luego no hay ni máximos, ni mínimos. Además la función es decreciente en todo \mathbb{R} . Vamos a estudiar a continuación la segunda derivada de f(x).

$$f''(x) = -12(x-1) = 0 \Longrightarrow x-1 = 0 \Longrightarrow x = 1$$

Vamos a estudiar su signo:

Luego en x=1 hay un punto de inflexión con tangente horizontal. Vamos a hacer una tabla de valores para poder representarla mejor:

La figura plana buscada la vemos en la Figura 1.46.

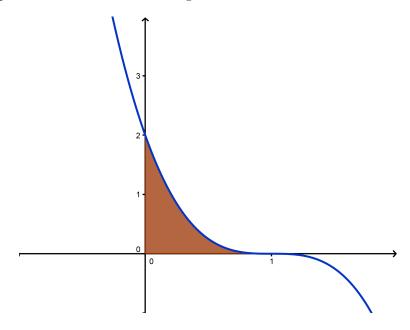


Figura 1.46: Representación de la región requerida

Por último vamos a calcular el área que nos pedían:

$$A = \int_0^1 \left[-2(x-1)^3 \right] dx = \left[\frac{-2(x-1)^4}{4} \right]_0^1 = 0 - \left(-\frac{1}{2} \right) = \frac{1}{2}u^2$$

1.3.51.

- a) Enuncie el Teorema del Valor Medio del Cálculo Integral.
- b) Calcule el punto al que se refiere dicho teorema para la función $f(x)=e^x+1$ en el intervalo [0,1].

(Junio 11)

- Solución:

El primer apartado podemos verlo en cualquier libro.

Es evidente que la función f es continua en todo \mathbb{R} , por lo tanto lo es en [0,1]. Vamos a calcular el valor de la integral.

$$\int_0^1 (e^x + 1) dx = [e^x + x]_0^1 = e^1 + 1 - 1 = e$$

Vamos a encontrar el valor c que nos afirma el teorema.

$$\int_{0}^{1} (e^{x} + 1) dx = e = (1 - 0) [e^{c} + 1] \Longrightarrow e^{c} + 1 = e \Longrightarrow e^{c} = e - 1 \Longrightarrow c = \ln(e - 1)$$

1.3.52. Calcule, utilizando la fórmula de integración por partes, una primitiva F(x) de la función $f(x) = x^2 \cdot lnx^2$ que cumpla F(1) = 0.

(Septiembre 11)

- Solución:

Cuando integramos por parte una integral que tiene un logaritmo y un polinomio siempre derivamos el logaritmo e integramos el polinomio.

$$u = lnx^2 \implies du = \frac{2x}{x^2} dx = \frac{2}{x} dx$$

$$dv = x^2 dx \implies v = \frac{x^3}{3}$$

Luego:

$$\int x^2 \ln x^2 dx = \frac{x^3}{3} \ln x^2 - \int \frac{x^3}{3} \cdot \frac{2}{x} dx =$$
$$= \frac{x^3}{3} \ln x^2 - \frac{2}{9} x^3 + C$$

Ahora bien, como F(1) = 0 tenemos que:

$$F(1) = \frac{1}{3}ln1 - \frac{2}{9} + C = -\frac{2}{9} + C = 0 \Longrightarrow C = \frac{2}{9}$$

Por tanto la primitiva buscada es:

$$F(x) = \frac{x^3}{3}lnx^2 - \frac{2}{9}x^3 + \frac{2}{9}$$

1.3.53.

- a) Represente, de forma aproximada, la gráfica de la función $f(x) = xe^{x^2-1}$. Señale el recinto plano limitado por dicha gráfica, el eje OX, la recta x = -1 y la recta x = 1.
- b) Calcule el área del recinto del apartado anterior.

(Septiembre 11)

- Solución:

Para representarla vamos a realizar un estudio somero de la función.

Es evidente que $Dom f = \mathbb{R}$.

Veamos los puntos de corte con el Eje X:

 $xe^{x^2-1}=0 \Longrightarrow x=0$ (La exponencial es estríctamente positiva en todo \mathbb{R})

88 1. Análisis

Corta el eje X en el origen. Al eje Y lo corta, por tanto, en el mismo punto.

La función no tiene asíntotas, pues:

- Asíntotas verticales: No tiene pues no hay ningún valor real en el que la función se vaya al infinito.
- Asíntotas horizontales:

$$\begin{array}{lll} \lim\limits_{x\to +\infty} xe^{x^2-1} & = & +\infty \\ \lim\limits_{x\to -\infty} xe^{x^2-1} & = & \lim\limits_{x\to +\infty} -xe^{x^2-1} = -\infty \end{array}$$

Asíntotas oblicuas:

$$m = \lim_{x \to +\infty} \frac{xe^{x^2 - 1}}{x} = +\infty$$

Igual ocurre cuando $x \to -\infty$.

Vamos a estudiar la derivada.

$$f'(x) = e^{x^2 - 1} + 2x^2 e^{x^2 - 1} = e^{x^2 - 1} (1 + 2x^2) = 0$$

No hay ningún valor que anule la derivada y además la función es creciente en todo \mathbb{R} . Estudiemos la segunda derivada:

$$f''(x) = 4xe^{x^2 - 1} + (1 + 2x^2)2xe^{x^2 - 1} = 4xe^{x^2 - 1} + (2x + 4x^3)e^{x^2 - 1} =$$
$$= e^{x^2 - 1}(4x^3 + 6x) = 0 \Longrightarrow 4x^3 + 6x = 0 \Longrightarrow x(4x^2 + 6) = 0 \Longrightarrow x = 0$$

La segunda derivada se anula sólo en x = 0. Vamos a estudiar la curvatura:

Luego hay un punto de inflexión en el origen.

Como tenemos pocos datos vamos a construir un tabla de valores:

La región pedida podemos verla en la gráfica 1.47.

Vamos a calcular el área que nos piden en el segundo apartado.

Vista la gráfica es evidente que tenemos que desglosar el área en dos trozos, que vienen pintadas en distinto color. Los dos trozos vienen determinadas por los límites -1 y 0, y por los límites 0 y 1 respectivamente.

$$A = \left| \int_{-1}^{0} x e^{x^2 - 1} dx \right| + \left| \int_{0}^{1} x e^{x^2 - 1} dx \right|$$

Vamos a calcular primero una primitiva de f(x). La resolvemos por sustitución haciendo el cambio $u=x^2-1$.

$$u = x^{2} - 1$$

$$du = 2x dx \Longrightarrow x dx = \frac{du}{2}$$

$$\int e^u \frac{du}{2} = \frac{1}{2}e^u + K = \frac{1}{2}e^{x^2 - 1} + K$$

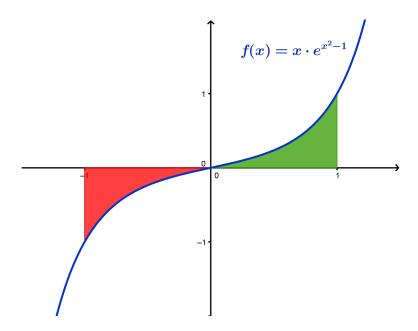


Figura 1.47: Representación de la región requerida

Luego:

$$A = \left| \int_{-1}^{0} x e^{x^{2} - 1} dx \right| + \left| \int_{0}^{1} x e^{x^{2} - 1} dx \right| = \left| \left[\frac{1}{2} e^{x^{2} - 1} \right]_{-1}^{0} \right| + \left| \left[\frac{1}{2} e^{x^{2} - 1} \right]_{0}^{1} \right| =$$

$$= \left| \frac{1}{2} e^{-1} - \frac{1}{2} \right| + \left| \frac{1}{2} - \frac{1}{2} e^{-1} \right| = \frac{1}{2} - \frac{1}{2e} + \frac{1}{2} - \frac{1}{2e} = 1 - \frac{1}{e} = \frac{e - 1}{e} u^{2}$$

1.3.54.

- a) Calcule los puntos de corte de la recta 2y-x=3 y de la recta y=1 con la rama hiperbólica $xy=2,\ x>0.$
- b) Dibuje el recinto plano limitado por las tres curvas del apartado anterior.
- c) Calcule el área de dicho recinto.

(Junio 12)

- Solución:

a) Vamos a empezar por encontrar los puntos de corte de la primera recta con la rama hiperbólica:

$$2y - x = 3$$

$$xy = 2 \quad ; \qquad x > 0$$

Sustituyendo tenemos:

$$(2y-3)y = 2 \Longrightarrow 2y^2 - 3y = 2 \Longrightarrow 2y^2 - 3y - 2 = 0 \Longrightarrow \begin{bmatrix} y = 2 \\ y = -\frac{1}{2} \end{bmatrix}$$

- Si $y = 2 \Longrightarrow x = 4 3 = 1 \Longrightarrow P(1, 2)$
- Si $y = -\frac{1}{2} \Longrightarrow x = -1 3 = -4 \Longrightarrow$ No vale, pues x tiene que ser mayor que 0.

Vamos a hacer ahora lo mismo con la recta y = 1.

En este caso el punto es Q(2,1)

b) Basta con hacer unas tablas de valores y el resultado podemos verlo en la gráfica 1.48.

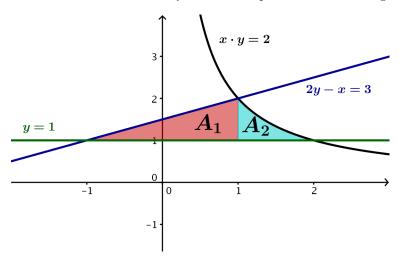


Figura 1.48: Representación de la región requerida

- c) Visto el recinto es fácil observar que tenemos dos zonas para realizar la integración, cuyas áreas sumadas nos dará el área que buscamos.
 - La región A_1 está determinada por las dos rectas. No es necesario integrar, pues se trata de un triángulo de base 2 y altura 1. Por tanto $A_1 = 1$ u^2 .
 - La región A_2 está determinada por la rama hiperbólica y la recta y = 1. Es fácil observar que los límites de integración son x = 1 y x = 2 (Si fuera necesario calcularíamos ambos).

$$A_2 = \int_1^2 \left(\frac{2}{x} - 1\right) dx = [2lnx - x]_1^2 = (2ln2 - 2) - (2ln1 - 1) =$$

$$= 2ln2 - 2 + 1 = (2ln2 - 1) u^2$$
(1.3)

Por tanto, el área total es:

$$A = A_1 + A_2 = 1 + 2ln2 - 1 = 2ln2 u^2$$

1.3.55. Calcule la siguiente integral de una función racional:

$$\int \frac{x^2+1}{x^2-1} \, dx.$$

(Junio 12)

- Solución:

Al ser una función racional en la que el grado del numerador es mayor o igual que el del denominador, ahy que dividir primero. Aplicaremnos la regla de la división:

$$D(x) = d(x) \cdot c(x) + r(x) \xrightarrow{\text{Dividiendo por d(x)}} \frac{D(x)}{d(x)} = c(x) + \frac{r(x)}{d(x)}$$

En nuestro caso:

$$\frac{x^2+1}{x^2-1} = 1 + \frac{2}{x^2-1}$$

Por tanto:

$$\int \frac{x^2 + 1}{x^2 - 1} \, dx = \int 1 \, dx + \int \frac{2}{x^2 - 1} \, dx = \tag{1.4}$$

La primera es bien sencilla, pero la segunda hay que resolverla por el método de fracciones simples. La factorización del denominador es:

$$x^2 - 1 = (x+1)(x-1)$$

Descomponemos la fracción:

$$\frac{2}{x^2 - 1} = \frac{A}{x + 1} + \frac{B}{x - 1} = \frac{A(x - 1) + B(x + 1)}{(x + 1)(x - 1)}$$

Tenemos pues que:

$$A(x-1) + B(x+1) = 2$$
; $\forall x \in \mathbb{R}$

Vamos a tomar dos valores, obvios por otra parte, x = 1 y x = -1.

$$x = -1 \Longrightarrow -2A = 2 \Longrightarrow A = -1$$

Luego, sustituyendo en (1.4) tenemos:

$$\int \frac{x^2 + 1}{x^2 - 1} dx = x + \int \frac{-1}{x + 1} dx + \int \frac{1}{x - 1} dx = x - \ln|x + 1| + \ln|x - 1| + k$$

1.3.56.

- a) Diga cuando una función F(x) es una primitiva de otra función f(x).
- b) Haciendo el cambio de variable $t = \sqrt{x-1}$, calcule la primitiva de la función $f(x) = x \cdot \sqrt{x-1}$ cuya gráfica pasa por el punto (1,0) del plano.

(Septiembre 12)

- Solución:

El primer apartado es muy sencillo, pues tiene que ocurrir F'(x) = f(x). Vamos a resolver la integral indefinida.

$$t = \sqrt{x-1} \Longrightarrow t^2 = x-1 \Longrightarrow x = t^2 + 1$$

 $dx = 2t dt$

Realizando el cambio tenemos:

$$\int x\sqrt{x-1} \, dx = \int (t^2+1) \cdot t \cdot 2t \, dt = \int (2t^4+2t^2) \, dt = \frac{2t^5}{5} + \frac{2t^3}{3} + k$$

Deshaciendo el cambio tenemos:

$$\int x\sqrt{x-1} \, dx = \frac{2\sqrt{(x-1)^5}}{5} + \frac{2\sqrt{(x-1)^3}}{3} + k$$

Vamos a ver cual es la que pasa por el punto (1,0). Sustituyendo tenemos:

$$\frac{2\sqrt{(1-1)^5}}{5} + \frac{2\sqrt{(1-1)^3}}{3} + k = 0 \Longrightarrow k = 0$$

La función buscada es:

$$F(x) = \frac{2\sqrt{(x-1)^5}}{5} + \frac{2\sqrt{(x-1)^3}}{3}$$

1.3.57. Calcule, utilizando la fórmula de integración por partes, una primitiva F(x) de la función $f(x) = (x+1)^2 \cdot sen x$ que cumpla F(0) = 1.

(Septiembre 12)

- Solución:

Tenemos que aplicar la integración por partes dos veces para calcular la integral indefinida.

$$u = (x+1)^2 \implies du = 2(x+1) dx$$

 $dv = senx dx \implies v = -cosx$

$$\int (x+1)^2 \sin x \, dx = -(x+1)^2 \cos x - \int 2(x+1)(-\cos x) \, dx =$$
$$= -(x+1)^2 \cos x + 2 \int (x+1) \cos x \, dx = (*)$$

Aplicando de nuevo la integración por partes tenemos:

$$u = x + 1 \implies du = dx$$

 $dv = \cos x \, dx \implies v = \sin x$

$$(*) = -(x+1)^2 \cos x + 2 \left[(x+1) \operatorname{sen} x - \int \operatorname{sen} x \, dx \right] =$$

$$= -(x+1)^2 \cos x + 2(x+1) \operatorname{sen} x - 2 \int \operatorname{sen} x \, dx =$$

$$= -(x+1)^2 \cos x + 2(x+1) \operatorname{sen} x + 2 \cos x + k$$

Imponiendo que F(0) = 1 resulta:

$$-(1)^2\cos 0 + 2\cdot 1\cdot sen 0 + 2\cos 0 + k = 1 \Longrightarrow -1 + 2 + k = 1 \Longrightarrow k = 0$$

La función buscada es:

$$F(x) = -(x+1)^2 \cos x + 2(x+1) \sin x + 2 \cos x$$

1.3.58.

- a) Halle, utilizando la fórmula de integración por partes, una primitiva de la función $f(x) = 1 + \ln x$.
- b) Calcule el área de la región plana limitada por la curva $y = \ln x$, la recta horizontal y = -1, y las rectas verticales x = 1 y x = e.

- Solución:

Vamos a calcular primero el valor de la integral por el método de integración por partes:

$$u = 1 + \ln x \implies du = \frac{1}{x} dx$$

 $dv = dx \implies v = x$

$$\int (1 + \ln x) dx = x(1 + \ln x) - \int \frac{x}{x} dx = x(1 + \ln x) - x + k = x + x \ln x - x + k = x + x \ln x + k$$

Para calcular el valor del área que nos piden en el segundo apartado tenemos que calcular la siguiente integral:

$$\int_{1}^{e} \left[\ln x - (-1) \right] dx = \int_{1}^{e} (\ln x + 1) dx$$

Por tanto:

$$\int_{1}^{e} (\ln x + 1) \, dx = [x \ln x]_{1}^{e} = e \ln e - 1 \ln 1 = e$$

Como el resultado obtenido es positivo el valor del área pedida coincide con el de esta integral.

1.3.59. Calcule la siguiente integral de una función racional:

$$\int \frac{3x}{x^2 + x - 2} \, dx$$

(Junio 13)

- Solución:

Es evidente que el resultado de la integral no es un logaritmo neperiano. Vamos a resolverla por el método de fracciones simples. Calculemos pues las raíces del denominador.

$$x^2 + x - 2 = 0 \Longrightarrow \begin{cases} x = 1 \\ x = -2 \end{cases}$$

Por tanto,

$$\frac{A}{x-1} + \frac{B}{x+2} = \frac{3x}{x^2 + x - 2} \Longrightarrow \frac{A(x+2) + B(x-1)}{(x-1)(x+2)} = \frac{3x}{x^2 + x - 2}$$

Esto ocurre para cualquier valor de x, por lo tanto, como los denominadores son iguales los numeradores también tendrán que serlo para cualquier valor de x.

$$A(x+2) + B(x-1) = 3x$$

Podemos darle cualquier valor a la x, pero será más cómodo darle las raíces antes encontradas.

$$x = 1 \implies 3A = 3 \Longrightarrow A = 1$$

 $x = -2 \implies -3B = -6 \Longrightarrow B = 2$

Luego la integral pedida es:

$$\int \frac{3x}{x^2 + x - 2} \, dx = \int \frac{1}{x - 1} \, dx + \int \frac{2}{x + 2} \, dx = \ln|x - 1| + 2\ln|x + 2| + k$$

1.3.60. Calcule el valor de la integral definida

$$\int_0^1 \left(\frac{2x}{x^2 + 1} + (2x - 1)e^{x^2 - x} + 2\pi \operatorname{sen}(2\pi x) \right) dx.$$

(Septiembre 13)

- Solución:

Vamos a empezar por calcular la integral indefinida. Integraremos sumando a sumando. Es evidente que el primero da como resultado un logaritmo neperiano, pues el numerador es la derivada del denominador. El segundo también es inmediato, pues lo que multiplica a la exponencial es la derivada del exponente. Por último, algo análogo ocurre con el tercer sumando, pues lo que multiplica al seno es la derivada de lo que hay dentro del mismo. Por tanto:

$$\int \left(\frac{2x}{x^2+1} + (2x-1)e^{x^2-x} + 2\pi \operatorname{sen}(2\pi x)\right) dx = \ln|x^2+1| + e^{x^2-x} - \cos(2\pi x) + k$$

Luego:

$$\int_0^1 \left(\frac{2x}{x^2 + 1} + (2x - 1)e^{x^2 - x} + 2\pi \operatorname{sen}(2\pi x) \right) dx = \left[\ln |x^2 + 1| + e^{x^2 - x} - \cos(2\pi x) + k \right]_0^1$$
$$= (\ln 2 + 1 + -1) - (0 + 1 - 1) = \ln 2$$

1.3.61.

- a) Dibuje el recinto plano limitado por la parábola $y=1-x^2$, el eje OX, la recta x=0 y la recta x=2.
- b) Calcule el área de dicho recinto.

(Septiembre 13)

- Solución:

Para pintar la parábola basta con hacer una tabla de valores (que aquí omitimos). La región que nos piden es:

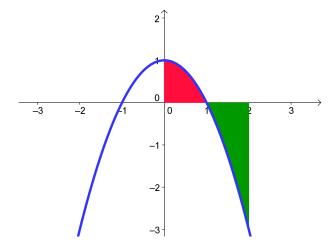


Figura 1.49: Representación gráfica de la región pedida

Vamos a calcular ahora el área que nos piden. Es fácil observar que la función corta al Eje X

en $x=\pm 1$. De los dos a nosotros sólo nos interesa x=1.

$$A = \left| \int_0^1 (1 - x^2) \, dx \right| + \left| \int_1^2 (1 - x^2) \, dx \right| = \left| \left[x - \frac{x^3}{3} \right]_0^1 \right| + \left| \left[x - \frac{x^3}{3} \right]_1^2 \right| =$$

$$= \left| \left(1 - \frac{1}{3} \right) \right| + \left| \left(2 - \frac{8}{3} \right) - \left(1 - \frac{1}{3} \right) \right| = \frac{2}{3} + \left| -\frac{2}{3} - \frac{2}{3} \right| = \frac{2}{3} + \frac{4}{3} = \frac{6}{3} = 2 u^2$$

1.3.62. Calcule el área de la región plana limitada por la gráfica de la función $f(x) = \cos x$, el eje OX y las rectas x = 0, $x = 2\pi$.

(Junio 14)

- Solución:

Vamos a empezar por representar, aunque no nos lo piden, la región.

Se trata de una función ampliamente conocida y no necesitamos mucho para hacer una representación aproximada.

En el gráfico vamos a diferenciar las zonas que están por encima del eje X y las que quedan por debajo. Dicha gráfica es:

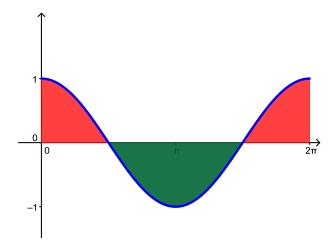


Figura 1.50: Representación gráfica de la función $\cos x$.

Viendo la gráfica tenemos que para calcular el área tendremos que determinar tres zonas distintas, $\left(0, \frac{\pi}{2}\right)$, $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ y $\left(\frac{3\pi}{2}, 2\pi\right)$. El área será:

$$A = \int_0^{\frac{\pi}{2}} \cos x \, dx - \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos x \, dx + \int_{\frac{3\pi}{2}}^{2\pi} \cos x \, dx = \left[\sin x \right]_0^{\frac{\pi}{2}} - \left[\sin x \right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} + \left[\sin x \right]_{\frac{3\pi}{2}}^{2\pi} =$$

$$= \sin \frac{\pi}{2} - \sin 0 - \left(\sin \frac{3\pi}{2} - \sin \frac{\pi}{2} \right) + \sin 2\pi - \sin \frac{3\pi}{2} = 1 - 0 - (-1 - 1) + 0 - (-1) = 4$$

El ejercicio puede hacerse sin necesidad de pintar la gráfica, para lo cual basta con hallar los puntos de corte de la función $f(x) = \cos x$ con el eje OX. Saldrán los mismos puntos que hemos visto en la gráfica y a partir de ahí se hace igual.

También puede hacerse de otra forma. Si nos damos cuenta, viendo la gráfica, que basta con calcular lo que pasa en el intervalo $\left(0, \frac{\pi}{2}\right)$ y multiplicar lo que sale por 4.

1.3.63. Calcule la siguiente suma de integrales definidas

$$\int_{1}^{2} \frac{-2}{x^{3}} dx + \int_{\pi}^{2\pi} \left(-\sin x \cdot e^{\sin x} + \cos^{2} x \cdot e^{\sin x}\right) dx,$$

cuyas integrales indefinidas asociadas son inmediatas.

(Junio 14)

- Solución:

Para resolver la segunda integral es necesario que nos demos cuenta que

$$(\cos x \cdot e^{\sin x})' = -\sin x \cdot e^{\sin x} + \cos^2 x \cdot e^{\sin x}$$

Esto hace que esta segunda integral sea inmediata.

Pasemos a resolverlas:

$$I_1 = \int_1^2 \frac{-2}{x^3} dx = \left[\frac{1}{x^2}\right]_1^2 = \frac{1}{4} - 1 = -\frac{3}{4}$$

$$I_2 = \int_{\pi}^{2\pi} \left(-\sec x \cdot e^{\sec x} + \cos^2 x \cdot e^{\sec x}\right) dx = \left[\cos x \cdot e^{\sec x}\right]_{\pi}^{2\pi} =$$

$$= \cos 2\pi \cdot e^{\sec 2\pi} - \cos \pi \cdot e^{\sec \pi} = 1 e^0 - (-1) e^0 = 1 + 1 = 2$$

Por tanto:

$$I = I_1 + I_2 = -\frac{3}{4} + 2 = \frac{5}{4}$$

1.3.64. Calcule la siguiente integral definida de una función racional:

$$\int_{2}^{e+1} \frac{x-2}{x^2 - 3x + 2} \, dx.$$

(Julio 14)

- Solución:

Se trata de la integral de una función racional. Para resolverla lo primero que tenemos que hacer es factorizar el denominador, pues de esa manera vemos de que tipo es, si podemos simplificarla, ...

Es fácil comprobar que:

$$x^2 - 3x + 2 = (x - 1) \cdot (x - 2)$$

Luego la función a la que vamos a realizar la integral es:

$$\frac{x-2}{x^2-3x+2} = \frac{x-2}{(x-1)\cdot(x-2)} = \frac{1}{x-1}$$

Por tanto

$$\int_{2}^{e+1} \frac{x-2}{x^2 - 3x + 2} dx = \int_{2}^{e+1} \frac{1}{x-1} dx = \left[\ln |x-1| \right]_{2}^{e+1} = \ln(e+1-1) - \ln(2-1) = \ln e - \ln 1 = 1$$

1.3.65.

- a) Dibuje el recinto plano limitado por la parábola $y=x^2-2\,$ y la recta y=x.
- b) Calcule el área de dicho recinto plano.

(Julio 14)

- Solución:

Dibujar el recinto no es problemático, pues se trata de una recta y una parábola. La zona que nos piden es:

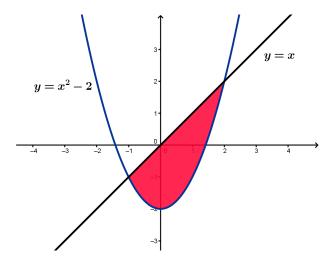


Figura 1.51: Representación gráfica de la región pedida

Vamos a calcular el área. Comenzamos por encontrar los puntos de corte de las dos funciones, los cuales serán nuestros límites de integración.

$$x^{2} - 2 = x \Longrightarrow x^{2} - x - 2 = 0 \Longrightarrow \begin{bmatrix} x = -1 \\ x = 2 \end{bmatrix}$$

Por tanto el área que nos piden será

$$A = \int_{-1}^{2} [x - (x^2 - 2)] dx = \int_{-1}^{2} (x - x^2 + 2) dx = \left[\frac{x^2}{2} - \frac{x^3}{3} + 2x \right]_{-1}^{2} =$$

$$= 2 - \frac{8}{3} + 4 - \left(\frac{1}{2} + \frac{1}{3} - 2 \right) = \frac{3}{2} - \frac{9}{3} + 6 = \frac{9}{2} u^2$$

Capítulo 2

Álgebra

2.1. Matrices y determinantes

2.1.1. Definir la suma y el producto de matrices. Dar un ejemplo de dos matrices que no pueden sumarse ni multiplicarse.

(Septiembre 00)

- Solución:

La parte teórica puede encontrarse en cualquier libro.

Como ejemplo de matrices que no pueden sumarse ni multiplicarse tenemos:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & 2 \\ 1 & 0 & 3 \end{pmatrix} \text{ y } B = \begin{pmatrix} 1 & 3 \\ 5 & -2 \end{pmatrix}$$

Es evidente que estas matrices no pueden sumarse, pues no son de la misma dimensión. De forma análoga no es difícil comprobar que no pueden multiplicarse, pues para eso es necesario que el número de columnas de la primera coincida con el número de filas de la segunda, cosa que no ocurre en ninguno de los casos.

2.1.2. Determinar todos los números reales x para los que es positivo el determinante

(Septiembre 01)

- Solución:

Vamos a calcular el valor del determinante en función de x para luego estudiar la inecuación resultante.

$$\begin{vmatrix} 3 & -3 & x \\ 1-x & x+1 & -1 \\ 2 & 0 & x \end{vmatrix} = 3x(x+1) + 6 - 2x(x+1) + 3x(1-x) =$$
$$= 3x^{2} + 3x + 6 - 2x^{2} - 2x + 3x - 3x^{2} = -2x^{2} + 4x + 6$$

Vamos a ver donde $-2x^2 + 4x + 6 > 0$. En primer lugar buscaremos las raices y con ellas

100 2. Álgebra

construiremos la tabla para estudiar el signo de la función.

$$-2x^2 + 4x + 6 = 0 \Longrightarrow x^2 - 2x - 3 = 0$$

$$x = \frac{2 \pm \sqrt{4 + 12}}{2} = \frac{2 \pm 4}{2} \left\{ \begin{array}{l} x = 3 \\ x = -1 \end{array} \right.$$

Vamos a estudiar el signo de la función:

Luego el determinante es positivo en (-1,3).

2.1.3. Calcular todas las matrices X tales que AX + B = X, donde

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 , $B = \begin{pmatrix} 1 & -2 \\ 0 & -1 \end{pmatrix}$

(Septiembre 01)

- Solución:

Empezaremos por despejar la X y después realizaremos las operaciones que sean necesarias:

$$AX + B = X \Longrightarrow AX - X = -B \Longrightarrow (A - I)X = -B \Longrightarrow X = (A - I)^{-1} \cdot (-B)$$

El último paso sólo podemos hacerlo si la matriz A-I es regular, cuestión que veremos a continuación.

$$A - I = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) - \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Es evidente que esta matriz es regular, pues su determinante es distinto de cero. Vamos a calcular la inversa. Supongamos que dicha matriz es:

$$(A-I)^{-1} = \left(\begin{array}{cc} x & y \\ z & t \end{array}\right)$$

Dicha matriz cumplirá:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Longrightarrow (A - I)^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Por tanto, sustituyendo tenemos:

$$X = (A - I)^{-1} \cdot (-B) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$$

2.1.4. Calcular la matriz X tal que AX = B, donde

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 , $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

- Solución:

Como la matriz A es invertible (pues $|A| = 1 \neq 0$) podemos despejar la matriz X multiplicando por la izquierda por la inversa de A.

$$A \cdot X = \cdot B \Longrightarrow A^{-1} \cdot A \cdot X = A^{-1} \cdot B \Longrightarrow X = A^{-1} \cdot B$$

Vamos a calcular la inversa de A.

$$\begin{pmatrix} x & y \\ z & t \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Longrightarrow \begin{cases} x = 1 \\ 2x + y = 0 \Longrightarrow y = -2 \\ z = 0 \\ 2z + t = 1 \Longrightarrow t = 1 \end{cases}$$

En consecuencia:

$$X = A^{-1} \cdot B = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} -5 & -6 \\ 3 & 4 \end{pmatrix}$$

2.1.5. Calcular dos números naturales a, b menores que 10 y tales que la siguiente matriz A tenga rango 2:

$$\left(\begin{array}{ccc}
2 & 2 & b \\
0 & 5 & a \\
3 & 1 & b
\end{array}\right)$$

(Junio 03)

- Solución

Es evidente que $Rg(A) \ge 2$, pues $\begin{vmatrix} 2 & 2 \\ 0 & 5 \end{vmatrix} = 10 \ne 0$. Calculemos el valor del |A|.

$$|A| = \begin{vmatrix} 2 & 2 & b \\ 0 & 5 & a \\ 3 & 1 & b \end{vmatrix} = 10b + 6a - 15b - 2a = -5b + 4a$$

Los números que buscamos tienen que ser naturales, menores que 10 y anular el determinante. Por tanto:

$$-5b + 4a = 0 \Longrightarrow 4a = 5b \Longrightarrow b = \frac{4a}{5}$$

Esto sólo es posible si a = 5 y b = 4.

2.1.6. Definir el producto de matrices. Dar un ejemplo de dos matrices A, B con 2 filas y 2 columnas, tales que $A \cdot B$ no coincida con $B \cdot A$.

(Septiembre 03)

- Solución:

La parte teórica puede encontrarse en cualquier libro.

Lo más natural sería que al elegir dos matrices el producto no sea conmutativo. Vamos a encontrar dos matrices que cumplan lo que piden y vamos a comprobar que así ocurre. Tomamos las matrices:

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} \text{ y } B = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}$$

102 2. Álgebra

Realicemos ambos productos para ver que no coinciden:

$$A \cdot B = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 9 & 11 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 8 & 21 \\ 3 & 8 \end{pmatrix}$$

2.1.7. Determinar todas las matrices X tales que $A \cdot X = X \cdot A$, donde:

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)$$

(Junio 04)

- Solución:

Supongamos que nuestra matriz X tiene la forma:

$$\mathbf{X} = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Siendo A como es tenemos que:

$$\mathbf{A} \cdot \mathbf{X} = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right) \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \left(\begin{array}{cc} a+c & b+d \\ a+c & b+d \end{array} \right)$$

$$\mathbf{X} \cdot \mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a+b & a+b \\ c+d & c+d \end{pmatrix}$$

Buscamos que $A \cdot X = X \cdot A$, por tanto igualando tenemos:

$$\left(\begin{array}{cc} a+c & b+d \\ a+c & b+d \end{array}\right) = \left(\begin{array}{cc} a+b & a+b \\ c+d & c+d \end{array}\right)$$

De lo que deducimos que:

$$\not a + c = \not a + b \Longrightarrow c = b$$

$$b + d = a + b \Longrightarrow a = d$$

$$a + \not e = \not e + d \Longrightarrow a = d$$

$$b + d = c + d \Longrightarrow c = b$$

Por tanto la matriz X buscada tiene la siguiente forma:

$$\mathbf{X} = \left(\begin{array}{cc} a & b \\ b & a \end{array}\right)$$

2.1.8. Hallar una matriz con tres filas y tres columnas que tenga tres elementos nulos y tal que ninguno de sus menores de orden dos sea nulo.

- Solución:

$$\mathbf{X} = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right)$$

2.1.9. Definir el concepto de rango de una matriz. Dar un ejemplo de una matriz con 3 filas y 4 columnas que tenga rango 2.

(Septiembre 04)

- Solución:

La parte de teoría se puede consultar en cualquier libro.

Para el segundo interrogante basta con coger las dos primeras filas que den rango 2 y la tercera sea combinación lineal de estas dos, por ejemplo, la suma de las dos:

$$\mathbf{X} = \begin{pmatrix} 1 & 3 & 2 & 0 \\ -1 & 1 & 0 & 3 \\ 1 - 1 & 3 + 1 & 2 + 0 & 0 + 3 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 & 0 \\ -1 & 1 & 0 & 3 \\ 0 & 4 & 2 & 3 \end{pmatrix}$$

2.1.10. ¿Puede aumentar el rango de una matriz cuadrada de 3 filas al sustituir un coeficiente no nulo por 0?¿y permanecer igual?. Justificar las respuestas.

(Septiembre 04)

- Solución:

En ambos casos la respuesta es SI. Veámoslo con un ejemplo.

En el primer caso, supongamos una matriz de rango 2 en la que la tercera fila sea suma de las dos primeras. si en la tercera fila cambiamos un número por cero es posible que el rango sea tres. Veamos un ejemplo:

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 4 & 3 & 5 \end{array} \right)$$

Esta matriz tiene rango 2, mientras que la matriz A' que mencionamos a continuación tiene rango 3:

$$\mathbf{A}' = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 4 & 3 & 0 \end{pmatrix} \Longrightarrow |\mathbf{A}'| = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 4 & 3 & 0 \end{vmatrix} = 16 + 27 - 12 - 6 \neq 0$$

En el segundo caso veamos el ejemplo:

$$\mathbf{A} = \left(\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right)$$

Esta matriz tiene rango 3, pues $|A| = 2 \neq 0$

Además si cambio un 1 por un 0, como en el ejemplo que sigue, tenemos:

$$\mathbf{A}' = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right)$$

que también tiene rango 3, pues $|A'| = 1 \neq 0$

2.1.11. Sea A una matriz cuadrada tal que $A^2 = A + I$, donde I es la matriz unidad. Demuestra que la matriz A es invertible.

(Junio 06)

- Solución:

Una posible manera de resolverlo es comprobar que la matriz B = A - I es la inversa de A. Vamos a comprobarlo.

$$A \cdot B = A \cdot (A - I) = A^2 - A = A + I - A = I$$

$$B \cdot A = (A - I) \cdot A = A^2 - A = A + I - A = I$$

Luego la matriz B así construida es la inversa de A y por tanto A es invertible.

Otra forma de resolverlo sería la siguiente:

Tenemos que $A^2 = A + I$, por tanto:

$$A^2 - A = I \Longrightarrow A(A - I) = I$$

Como ambas matrices son iguales, sus determinantes son iguales y operando llegamos a lo que queremos.

$$|A(A-I)| = |I| \Longrightarrow |A||A-I| = |I| = 1$$

En consecuencia ninguno de los factores puede ser cero al ser el producto 1 y de ahí deducimos que $|A| \neq 0 \Longrightarrow A$ es invertible.

2.1.12. Escribe un ejemplo de una matriz de rango 2, con 3 filas y 4 columnas, que no tenga ningún coeficiente nulo.

(Septiembre 06)

- Solución:

Basta con tomar las dos primeras filas linealmente independientes sin coeficientes nulos y sumarlas para obtener la tercera, como por ejemplo

$$\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
6 & 8 & 10 & 12
\end{array}\right)$$

2.1.13.

a) Calcula el rango de la matriz A, según los valores del parámetro a

$$\left(\begin{array}{cccc}
1 & 2 & 3 & a \\
2 & 4 & 6 & 8 \\
3 & 6 & 9 & 12
\end{array}\right)$$

b) Escribe las propiedades del rango que hayas usado.

- Solución:

a) Es evidente que las columnas 2^a y 3^a son proporcionales a la primera, luego como mucho el rango será 2. De igual manera las filas 2^a y 3^a son proporcinales $(F_3 = \frac{3}{2}F_2)$, por tanto el único menor que puede dar distinto de cero es:

$$\left|\begin{array}{cc} 1 & a \\ 2 & 8 \end{array}\right| = 8 - 2a = 0 \Longrightarrow a = 4$$

En consecuencia:

- Si $a = 4 \Longrightarrow RqA = 1$
- Si $a \neq 4 \Longrightarrow RgA = 2$
- b) Mirar en un libro, aunque ya se razonó en el apartado anterior.

2.1.14. Sea A una matriz cuadrada de orden 3.

- a) Si sabemos que el determinante de la matriz 2A es |2A|=8. ¿Cuánto vale el determinante de A? Escribe la propiedad de los determinantes que hayas usado para obtener este valor.
- b) Calcula para qué valores de x se cumple que |2A| = 8, siendo A la matriz

$$A = \left(\begin{array}{ccc} x & 1 & 1\\ x+1 & 2 & 2\\ x & 2-x & 1 \end{array}\right)$$

(Septiembre 07)

- Solución:

a) La matriz 2A se obtiene multiplicando cada fila por 2. Como son tres sus filas tenemos:

$$|2A| = 2^3 \cdot |A|$$

En consecuencia tenemos |A| = 1.

La propiedad que hemos usado es aquella que dice que si multiplicamos todos los elementos de una fila o columna de una matriz cuadrada por un mismo número, el determinante de la matriz resultante es el producto de dicho número por el determinante de la matriz original.

b) Según lo anterior |A| = 1. Ahora bien

$$\begin{vmatrix} x & 1 & 1 \\ x+1 & 2 & 2 \\ x & 2-x & 1 \end{vmatrix} = 2x + 2x + (x+1)(2-x) - 2x - (x+1) - 2x(2-x) =$$

$$= 2x + 2x + 2x + 2 - x^{2} - x - 2x - x - 1 - 4x + 2x^{2} = x^{2} - 2x + 1$$

En consecuencia:

$$|A| = x^2 - 2x + 1 = 1 \Longrightarrow x^2 - 2x = 0$$

$$x(x-2) = 0 \Longrightarrow \begin{vmatrix} x = 0 \\ x - 2 = 0 \Longrightarrow x = 2 \end{vmatrix}$$

2.1.15. Calcula la matriz X tal que $A^2X = A$, donde

$$A = \left(\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right)$$

(Septiembre 07)

- Solución:

Vamos a empezar por calcular A^2 .

$$A^2 = A \cdot A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}$$

Es obvio que la matriz resultante es regular, pues su determinante vale 1.

Mi ecuación es:

$$\left(\begin{array}{cc} 3 & 4 \\ 2 & 3 \end{array}\right) \cdot X = \left(\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right)$$

Luego:

$$X = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$

Vamos a calcular primero la inversa:

$$\begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & -4 \\ -2 & 3 \end{pmatrix}$$
$$A^{-1} = \frac{\begin{pmatrix} 3 & -4 \\ -2 & 3 \end{pmatrix}}{1} = \begin{pmatrix} 3 & -4 \\ -2 & 3 \end{pmatrix}$$

En consecuencia:

$$X = \begin{pmatrix} 3 & -4 \\ -2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$

Otra forma de hacerlo es darnos cuenta de que A es regular y por tanto:

$$A^{-1} \cdot A^2 X = A^{-1} \cdot A \Longrightarrow AX = I$$

Por tanto X es la inversa de A. Calculando esta está resuelto el ejercicio.

2.1.16. Determina el rango de la matriz A según los valores de b:

$$A = \left(\begin{array}{ccc} -1 & 2 & b \\ b & b - 3 & -1 \\ 0 & 2 & 1 \end{array}\right)$$

(Junio 08)

- Solución:

Vamos a resolver el determinante de orden 3 e igualaremos a cero.

$$\begin{vmatrix} -1 & 2 & b \\ b & b-3 & -1 \\ 0 & 2 & 1 \end{vmatrix} = -(b-3) + 2b^2 - 2b - 2 = -b + 3 + 2b^2 - 2b - 2 = 2b^2 - 3b + 1 = 0$$

Resolviendo la ecuación tenemos:

$$b = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4} = \begin{cases} \frac{3 + 1}{4} = 1\\ \frac{3 - 1}{4} = \frac{2}{4} = \frac{1}{2} \end{cases}$$

Por tanto:

- Si $b \neq 1, \frac{1}{2}$ el rango es 3.
- Si b = 1 la matriz es:

$$\left(\begin{array}{ccc}
-1 & 2 & 1 \\
1 & -2 & -1 \\
0 & 2 & 1
\end{array}\right)$$

En este caso el rango es 2, pues las dos primeras filas son linealmente dependientes y la 2ª y 3ª son linealmente independientes.

• Si $b = \frac{1}{2}$ la matriz es:

$$\left(\begin{array}{cccc}
-1 & 2 & \frac{1}{2} \\
\frac{1}{2} & -\frac{5}{2} & -1 \\
0 & 2 & 1
\end{array}\right)$$

En este caso el rango también es 2 pues las filas 2ª y 3ª son linealmente independientes y no puede ser tres al anularse el determinante.

2.1.17.

- a) Define el concepto de rango de una matriz.
- b) Determina razonadamente si la tercera fila de la matriz A es combinación lineal de las dos primeras

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{array}\right)$$

(Septiembre 08)

- Solución:

- a) La respuesta a este apartado puede encontrarse en cualquier libro de texto.
- b) Dada la matriz

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{array}\right)$$

vamos a ver si existen a y b distintos de cero tal que:

$$(2,1,1) = a(1,1,1) + b(1,2,-1)$$

108

De aquí obtenemos el siguiente sistema:

$$\begin{bmatrix}
 a & + & b & = & 2 \\
 a & + & 2b & = & 1 \\
 a & - & b & = & 1
 \end{bmatrix}$$

De las ecuaciones 1^a y 3^a deducimos:

$$\begin{bmatrix} a + b = 2 \\ a - b = 1 \end{bmatrix} \Longrightarrow 2a = 3 \Longrightarrow a = \frac{3}{2}$$

Por tanto $b = 2 - \frac{3}{2} = \frac{1}{2}$

Si estos valores cumplen la segunda ecuación tendríamos que si es dependiente de las dos primeras, en caso contrario sería independiente. Sustituimos y tenemos

$$\frac{3}{2} + \frac{2}{2} = \frac{5}{2} \neq 1$$

Luego la tercera fila es independiente de las dos primeras.

- **2.1.18.** Sea A una matriz cuadrada de orden 3. Sabemos que el determinante de A es |A|=2. Calcula los siguientes determinantes:
 - a) |2A|.
 - **b**) $|A^{-1}|$.
 - c) $|A \cdot A^t|$ (A^t es la traspuesta de la matriz A).
 - d) Determinante de la matriz obtenida al intercambiar las dos primeras columnas de A.
 - e) Determinante de la matriz que se obtiene al sumar a la primera fila de A la segunda multiplicada por 2.

(Junio 09)

- Solución:

a) La matriz 2A es aquella que se obtiene multiplicando cada elemento de A por 2. Además hay una propiedad de los determinantes que afirma, que si multiplicamos los elementos de una fila o columna de una matriz cuadrada por un número no nulo, el determinante de la matriz queda multiplicado por dicho número.

En consecuencia, como todas las filas están multiplicadas por 2 y la matriz A es de orden 3,

$$|2A| = 2^3 \cdot |A| = 8 \cdot 2 = 16$$

b) Sabemos que $|A\cdot B|=|A|\cdot |B|.$ Además, $A\cdot A^{-1}=I$ cuyo determinante vale 1. Por tanto,

$$\left|A \cdot A^{-1}\right| = \left|I\right| \Rightarrow \left|A^{-1}\right| \cdot \left|A\right| = 1 \Rightarrow \left|A^{-1}\right| = \frac{1}{|A|} = \frac{1}{2}$$

c) Aplicando la misma propiedad anterior y otra que dice que $|A^t| = |A|$,

$$|A \cdot A^t| = |A| \cdot |A^t| = |A|^2 = 4$$

d) Hay otra propiedad de los determinantes que dice que si intercambiamos dos filas o columnas de una matriz, el determinante de dicha matriz cambia de signo.

Por tanto el determinante buscado vale -2.

e) Hay otra propiedad que dice que si a una fila o columna le sumamos una combinación lineal de las demás paralelas, su determinante no varía. En consecuencia el determinante de esta nueva matriz sigue siendo 2.

2.1.19. Determine el rango de la matriz A siguiente según los valores del parámetro b:

$$A = \left(\begin{array}{ccc} 0 & b & b \\ 1 & 0 & 1 \\ b & -2 & 0 \end{array}\right)$$

(Junio 09)

- Solución:

Para estudiar el rango vamos a calcular el determinante de la matriz.

$$|A| = \begin{vmatrix} 0 & b & b \\ 1 & 0 & 1 \\ b & -2 & 0 \end{vmatrix} = b^2 - 2b = 0 \Rightarrow b(b-2) = 0 \Rightarrow \begin{vmatrix} b = 0 \\ b = 2 \end{vmatrix}$$

Luego:

- Si $b \neq 0, 2 \Rightarrow RqA = 3$
- Si b = 0 la matriz resultante es

$$A = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & -2 & 0 \end{array}\right)$$

En este caso RgA = 2, pues el menor $\begin{vmatrix} 1 & 0 \\ 0 & -2 \end{vmatrix} = -2 \neq 0$

ullet Si b=2 la matriz resultante es

$$A = \left(\begin{array}{ccc} 0 & 2 & 2\\ 1 & 0 & 1\\ 2 & -2 & 0 \end{array}\right)$$

En este caso RgA=2, pues el menor $\begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} = -2 \neq 0$

2.1.20. Considere las matrices:

$$A = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}, B = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, O = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

- a) Diga razonadamente cuál es el rango de la matriz $A \cdot B$.
- b) Clasifique y resulva el sistema de ecuaciones:

$$A \cdot B \cdot X = O$$

(Septiembre 09)

- Solución:

a) Veamos cuál es la matriz $A \cdot B$.

$$A \cdot B = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 4 & -4 \\ -1 & 2 & -2 \end{pmatrix}$$

Es obvio que $F_2 = -2 \cdot F_1$ y que $F_3 = -F_1$, luego el rango de la matriz $A \cdot B$ es igual a 1.

b) El sistema sale de:

$$A \cdot B \cdot X = 0 \Rightarrow \begin{pmatrix} 1 & -2 & 2 \\ -2 & 4 & -4 \\ -1 & 2 & -2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Por tanto es:

$$\left\{
 \begin{array}{rrrrr}
 x & - & 2y & + & 2z & = 0 \\
 -2x & + & 4y & - & 4z & = 0 \\
 -x & + & 2y & - & 2z & = 0
 \end{array}
\right\}$$

Es obvio que se trata de un sistema homogéneo, luego ya sabemos que es compatible. Además, según el apartado a), el rango de la matriz de los coeficientes es 1, luego podemos eliminarlas y quedarnos sólo con la primera ecuación.

Tengo pues un sistema compatible con una ecuación y tres incógnitas, luego es compatible indeterminado y además voy a necesitar dos parámetros.

Para resolverlo voy a transformar en parámetros las incógnitas y y z. Entonces tenemos:

- **2.1.21.** Considere la matriz $A = \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix}$.
 - a) Calcule el determinante de A y compruebe la igualdad

$$|A| = (b-a)(c-a)(c-b)$$

b) ¿Qué relación debe existir entre a, b y c para que el rango de la matriz A sea igual a 1? Justifique la respuesta.

(Septiembre 09)

- Solución:

Este determinante es conocido como determinante de Vandermonde.

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} \begin{vmatrix} F_2 = F_2 - aF_1 \\ F_3 = F_3 - a^2 f_1 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 0 & b - a & c - a \\ 0 & b^2 - a^2 & c^2 - a^2 \end{vmatrix} = 1 \cdot A_{11} =$$

$$= \begin{vmatrix} b - a & c - a \\ b^2 - a^2 & c^2 - a^2 \end{vmatrix} = (b - a) (c^2 - a^2) - (c - a) (b^2 - a^2)$$

$$= (b - a)(c - a)(c + a) - (c - a)(b - a)(b + a) =$$

$$= (b - a)(c - a) [(c + a) - (b + a)] = (b - a)(c - a)(c - b)$$

Vamos a responder al segundo apartado.

Es obvio que RgA = 1 por la primera fila. Para que sea sólo 1 las otras dos filas tienen que ser dependientes de ésta, es decir, tienen que ser proporcionales a ella. De aquí deducimos que a, b, y c tienen que ser iguales.

2.1.22. Determine el rango de la matriz A según los valores de b:

$$A = \left(\begin{array}{ccc} 1 & 2 & 1 \\ b+1 & 1 & 1 \\ 1 & b & b-1 \end{array}\right)$$

(Junio 10 - Fase general)

- Solución:

Como es una matriz cuadrada empezamos por estudiar el propio determinante de orden 3.

$$\begin{vmatrix} 1 & 2 & 1 \\ b+1 & 1 & 1 \\ 1 & b & b-1 \end{vmatrix} = b-1+2+b(b+1)-1-2(b+1)(b-1)-b =$$

$$= b-1+2+b^2+b-1-2b^2+2-b=-b^2+b+2=0 \Longrightarrow$$

$$\begin{vmatrix} b=2 \\ b=-1 \end{vmatrix}$$

Por tanto,

- \blacksquare Si $b \neq -1, 2 \Longrightarrow RqA = 3$.
- Si b = -1 la matriz queda de la siguiente forma:

$$A = \left(\begin{array}{ccc} 1 & 2 & 1\\ 0 & 1 & 1\\ 1 & -1 & -2 \end{array}\right)$$

cuyo rango es
$$2\left(\left| \begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right| = 1 \neq 0 \right)$$

• Si b = 2 la matriz resultante es:

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 3 & 1 & 1 \\ 1 & 2 & 1 \end{array}\right)$$

cuyo rango es 2
$$\left(\left| \begin{array}{cc} 1 & 2 \\ 3 & 1 \end{array} \right| = 1 - 6 = -5 \neq 0 \right)$$

2.1.23.

- a) Defina el concepto de rango de una matriz.
- b) Calcule el rango de la matriz

$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 2 & -1 \\ -2 & 1 & 2 \end{pmatrix}$$

c) Diga, razonadamente, si la segunda columna de la matriz A anterior es combinación lineal de las otras dos columnas.

(Junio 10 - Fase específica)

- Solución:

El primer apartado podemos encontrarlo en cualquier libro. Veamos el segundo.

Es obvio que
$$RgA \geqslant 2$$
, pues el menor $\begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} = -3 \neq 0$

Vamos a ver si tiene rango 3.

$$|A| = \begin{vmatrix} -1 & 1 & 1 \\ 1 & 2 & -1 \\ -2 & 1 & 2 \end{vmatrix} = -4 + 2 + 1 + 4 - 2 - 1 = 0$$

Luego el RgA = 2.(Es fácil también ver que el rango no es 3 pues las columnas 1^a y 3^a son proporcionales).

La respuesta al tercer apartado es que no es posible, pues la tercera es proporcional a la primera, por tanto, para que la segunda se pueda poner como combinación lineal de las otras dos tendría que ser proporcional a ellas, cosa que no ocurre.

2.1.24.

- a) Sean B y C matrices cuadradas de orden 3. Diga cuándo, por definición, C es la matriz inversa de B.
- b) Diga razonadamente si la matriz

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right)$$

tiene inversa, y si la respuesta es afirmativa calcule la matriz A^{-1} .

- Solución:

La respuesta al primer apartado podemos encontrarla en cualquier libro. Vamos a responder al segundo.

Para que una matriz tenga inversa tiene que ser una matriz regular, es decir, tener determinante distinto de cero. Veamos que ocurre en nuestro caso.

$$\left| \begin{array}{ccc|c} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right| = -1 - 1 = -2 \neq 0$$

Luego la matriz A tiene inversa. Vamos a calcularla.

Por tanto:

$$A^{-1} = \frac{1}{-2} \begin{pmatrix} -1 & -1 & 1\\ -1 & 1 & -1\\ 1 & -1 & -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2}\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

2.1.25. Determine el rango de la matriz A según los valores de a:

$$A = \left(\begin{array}{ccc} 0 & 1 & 2\\ a+1 & -1 & a-2\\ -1 & a+1 & 2 \end{array}\right)$$

 $(Septiembre\ 10$ - $Fase\ especifica)$

- Solución:

Vamos a empezar estudiando el determinante de A.

$$|A| = \begin{vmatrix} 0 & 1 & 2 \\ a+1 & -1 & a-2 \\ -1 & a+1 & 2 \end{vmatrix} = -(a-2) + 2(a+1)^2 - 2 - 2(a+1) =$$

$$= -a+2+2a^2+4a+2-2-2a-2 = 2a^2+a = 0 \Longrightarrow \begin{bmatrix} a=0 \\ a=-\frac{1}{2} \end{bmatrix}$$

Luego

- Si $a \neq 0, -\frac{1}{2} \Longrightarrow RgA = 3.$
- $\bullet \ \, \mathrm{Si} \,\, a = 0$ la matriz queda

$$A = \left(\begin{array}{rrr} 0 & 1 & 2 \\ 1 & -1 & -2 \\ -1 & 1 & 2 \end{array}\right)$$

114

$$RgA = 2$$
 pues $\begin{vmatrix} 0 & 1 \\ 1 & -1 \end{vmatrix} = -1 \neq 0$

• Si $a = -\frac{1}{2}$ la matriz queda

$$A = \begin{pmatrix} 0 & 1 & 2\\ \frac{1}{2} & -1 & -\frac{5}{2}\\ -1 & \frac{1}{2} & 2 \end{pmatrix}$$

$$RgA = 2$$
 pues $\begin{vmatrix} 0 & 1 \\ \frac{1}{2} & -1 \end{vmatrix} = -\frac{1}{2} \neq 0$

2.1.26. Calcule las matrices de la forma $X = \begin{pmatrix} x & 1 \\ y & 0 \end{pmatrix}$ que cumplen la ecuación:

$$X \cdot X^t = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$$

donde X^t es la matriz traspuesta de X

(Junio 11)

- Solución:

La traspuesta de X es:

$$X^t = \left(\begin{array}{cc} x & y \\ 1 & 0 \end{array}\right)$$

Luego:

$$X \cdot X^t = \left(\begin{array}{cc} x & 1 \\ y & 0 \end{array} \right) \cdot \left(\begin{array}{cc} x & y \\ 1 & 0 \end{array} \right) = \left(\begin{array}{cc} x^2 + 1 & xy \\ xy & y^2 \end{array} \right)$$

Igualando la matriz obtenida a la matriz identidad tenemos:

$$x^2 + 1 = 1$$

$$xy = 0$$

$$y^2 = 1$$

De la primera deducimos que x=0. Esto hace que se cumpla la segunda y de la tercera deducimos que $y=\pm 1$.

Por tanto, las matrices buscadas son:

$$X_1 = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right) \quad y \quad X_2 = \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right)$$

2.1.27.

a) Diga, razonadamente, si la tercera columna de la matriz A siguiente es combinación lineal de las dos primeras columnas:

$$A = \left(\begin{array}{rrrr} 1 & 2 & -3 & 0 \\ 0 & 1 & -1 & 1 \\ -1 & 0 & 1 & -1 \end{array}\right).$$

b) Calcule el rango de la matriz A.

(Septiembre 11)

- Solución:

En el primer apartado basta con observar que $c_3 = -c_1 - c_2$.

El segundo apartado nos pide calcular el rango de la matriz A. Tenemos que A es:

$$A = \left(\begin{array}{rrrr} 1 & 2 & -3 & 0 \\ 0 & 1 & -1 & 1 \\ -1 & 0 & 1 & -1 \end{array}\right)$$

Es obvio que $RgA \geqslant 2$, pues $\begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1 \neq 0$.

El máximo rango que puede tener A es tres, pues sólo tiene tres filas. Para probar si tiene rango tres basta con ver cuanto valen los menores de orden tres que contienen al menor de orden dos que dió distinto de 0, es decir, las matrices formadas por las columnas c_1, c_2, c_3 y c_1, c_2, c_4 .

En el primer caso el determinante vale cero, pues, según el apartado anterior, la tercera columna es combinación lineal de las dos primeras. Veamos el otro menor.

$$\begin{vmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & -1 \end{vmatrix} = -1 - 2 = -3 \neq 0$$

Luego RqA = 3.

2.1.28. Calcule la matriz inversa de la matriz $A = B^2 - 2 \cdot C$, siendo

$$B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}.$$

(Junio 12)

- Solución:

Vamos a empezar por calcular A.

$$A = B^{2} - 2C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} - 2 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 0 \\ 2 & 2 & -2 \\ 0 & -2 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 2 \\ -2 & -1 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

Para calcular la inversa seguimos el proceso habitual. Vamos a empezar por calcular el determinante de la matriz A.

$$\begin{vmatrix} 0 & 0 & 2 \\ -2 & -1 & 2 \\ 2 & 2 & 0 \end{vmatrix} = -8 + 4 = -4 \neq 0$$

Luego la matriz A tiene inversa. Vamos a calcularla.

$$\begin{pmatrix} 0 & 0 & 2 \\ -2 & -1 & 2 \\ 2 & 2 & 0 \end{pmatrix} \xrightarrow{Menores} \begin{pmatrix} -4 & -4 & -2 \\ -4 & -4 & 0 \\ 2 & 4 & 0 \end{pmatrix} \xrightarrow{Adjuntos} \begin{pmatrix} -4 & 4 & -2 \\ 4 & -4 & 0 \\ 2 & -4 & 0 \end{pmatrix} \xrightarrow{Traspuesta}$$

$$\xrightarrow{Traspuesta} \begin{pmatrix} -4 & 4 & 2 \\ 4 & -4 & -4 \\ -2 & 0 & 0 \end{pmatrix}$$

Por tanto:

$$A^{-1} = \frac{1}{-4} \begin{pmatrix} -4 & 4 & 2 \\ 4 & -4 & -4 \\ -2 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -\frac{1}{2} \\ -1 & 1 & 1 \\ \frac{1}{2} & 0 & 0 \end{pmatrix}$$

2.1.29. Calcule los valores de a para los que el determinante de la matriz B es igual a 32, |B| = 32, siendo $B = 2 \cdot A^2$ y

$$A = \left(\begin{array}{ccc} a & 1 & -a \\ 1 & 1 & 0 \\ 1 & 0 & 2 \end{array}\right)$$

(Septiembre 12)

- Solución:

Vamos a tener en cuenta dos propiedades de los determinantes:

- (1) Si multiplicamos los elementos de una línea por un número, queda multiplicado el valor del determinante por dicho número.
- (2) El determinante del producto de dos matrices es igual al producto de los determinantes.

Tenemos que

$$|B| = 32 \Longrightarrow |2A^2| = 32 \stackrel{(1)}{\Longrightarrow} |A^2| = 4 \Longrightarrow |A \cdot A| = 4 \stackrel{(2)}{\Longrightarrow} |A| = 2$$

Dicho esto vamos a calcular el determinante de A y vamos a igualarlo a 2.

$$|A| = \begin{vmatrix} a & 1 & -a \\ 1 & 1 & 0 \\ 1 & 0 & 2 \end{vmatrix} = 2a + a - 2 = 2 \Longrightarrow 3a = 4 \Longrightarrow a = \frac{4}{3}$$

2.1.30. ¿Existe alguna matriz $X = \begin{pmatrix} x & y \\ z & x \end{pmatrix}$ que cumpla

$$\left(\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right) \cdot X = X \cdot \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right)$$

y sea NO nula? Razone la respuesta.

- Solución:

Vamos a realizar las operaciones que nos indica el enunciado. De ahí resultará un sistema de ecuaciones que procederemos a estudiar.

$$\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \cdot X = X \cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x & y \\ z & x \end{pmatrix} = \begin{pmatrix} x & y \\ z & x \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} x + 2z & y + 2x \\ x + z & y + x \end{pmatrix} = \begin{pmatrix} x + y & x - y \\ z + x & z - x \end{pmatrix}$$

Igualando obtenemos el siguiente sistema:

$$x + 2z = x + y$$

$$y + 2x = x - y$$

$$x + z = z + x$$

$$y + x = z - x$$

La tercera ecuación podemos descartarla. De la primera deducimos que y=2z. Sustituyendo esto último en la segunda y la cuarta tenemos:

$$2z + 2x = x - 2z \implies x + 4z = 0$$
$$2z + x = z - x \implies 2x + z = 0$$

El sistema formado por estás dos últimas igualdades es homogéneo y obviamente también es compatible determinado. En consecuencia x=0 y $z=0 \Longrightarrow y=0$.

Por tanto, no existe una matriz X no nula que cumpla lo pedido.

2.1.31. Dadas las matrices

$$A = \begin{pmatrix} 1 & 0 & -1 \\ -1 & -1 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \qquad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

pruebe que la matriz inversa de A es $A^{-1} = -A^2 + A + 2I$.

(Junio 13)

- Solución:

Vamos a calcular los dos miembros de la igualdad y comprobaremos que sale lo mismo. Comencemos por la inversa.

$$\begin{vmatrix} 1 & 0 & -1 \\ -1 & -1 & 1 \\ 0 & 1 & 1 \end{vmatrix} = -1 + 1 - 1 = -1 \neq 0$$

Como el determinante es distinto de cero la matriz A tiene inversa. Vamos a calcularla.

$$\begin{pmatrix} 1 & 0 & -1 \\ -1 & -1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{Menores} \begin{pmatrix} -2 & -1 & -1 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix} \xrightarrow{Adjuntos} \begin{pmatrix} -2 & 1 & -1 \\ -1 & 1 & -1 \\ -1 & 0 & -1 \end{pmatrix} \xrightarrow{Traspuesta}$$

$$\xrightarrow{Traspuesta} \begin{pmatrix} -2 & -1 & -1 \\ 1 & 1 & 0 \\ -1 & -1 & -1 \end{pmatrix}$$

Por tanto:

$$A^{-1} = \frac{1}{-1} \begin{pmatrix} -2 & -1 & -1 \\ 1 & 1 & 0 \\ -1 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \\ -1 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Vamos a calcular A^2 .

$$A^{2} = A \cdot A = \begin{pmatrix} 1 & 0 & -1 \\ -1 & -1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -1 \\ -1 & -1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 2 & 1 \\ -1 & 0 & 2 \end{pmatrix}$$

Luego:

$$-A^2 + A + 2I = \begin{pmatrix} -1 & 1 & 2 \\ 0 & -2 & -1 \\ 1 & 0 & -2 \end{pmatrix} + \begin{pmatrix} 1 & 0 & -1 \\ -1 & -1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \\ -1 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Por lo tanto sale lo mismo.

Otra forma de hacerlo, aportada por mi compañero Antonio Molano, sería calcular $-A^2+A+2I$, como acabamos de hacer y después multiplicar $A \cdot (-A^2+A+2I)$ y comprobar que sale la identidad.

2.1.32. Dadas las matrices
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 \mathbf{y} $B = \begin{pmatrix} 3 & x & y \\ -2 & 1 & -2 \\ 2 & x & y \end{pmatrix}$, estudie si

existen números reales x e y tales que la matriz B es la inversa de la matriz A.

(Septiembre 13)

- Solución:

Vamos a calcular la inversa de A. Empezaremos por calcular el valor de su determinante.

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 3 - 2 = 1$$

Luego la matriz es invertible. Vamos a calcular la inversa:

$$\begin{pmatrix} 1 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{Menores} \begin{pmatrix} 3 & 2 & 2 \\ 1 & 1 & 1 \\ 3 & 2 & 3 \end{pmatrix} \xrightarrow{Adjuntos} \begin{pmatrix} 3 & -2 & 2 \\ -1 & 1 & -1 \\ 3 & -2 & 3 \end{pmatrix} \xrightarrow{Traspuesta}$$

$$\xrightarrow{Traspuesta} \begin{pmatrix} 3 & -1 & 3 \\ -2 & 1 & -2 \\ 2 & -1 & 3 \end{pmatrix}$$

Por tanto:

$$A^{-1} = \frac{1}{1} \begin{pmatrix} 3 & -1 & 3 \\ -2 & 1 & -2 \\ 2 & -1 & 3 \end{pmatrix} = \begin{pmatrix} 3 & -1 & 3 \\ -2 & 1 & -2 \\ 2 & -1 & 3 \end{pmatrix}$$

Para comprobar si existen los x e y que cumplen la condición $A^{-1} = B$ igualamos las dos matrices y comprobamos si es posible.

$$\begin{pmatrix} 3 & -1 & 3 \\ -2 & 1 & -2 \\ 2 & -1 & 3 \end{pmatrix} = \begin{pmatrix} 3 & x & y \\ -2 & 1 & -2 \\ 2 & x & y \end{pmatrix}$$

Esa igualdad se cumple si x = -1 e y = 3.

2.1.33.

a) Calcule el determinante de la matriz

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & -1 & 0 \end{array}\right).$$

- b) Calcule la matriz inversa de A.
- c) Calcule el determinante de la matriz $B = \frac{1}{2}A^3$ sin obtener previamente B.

(Junio 14)

- Solución:

Vamos a comenzar calculando el valor del determinante:

$$|A| = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & -1 & 0 \end{vmatrix} = 0 + 0 + 0 + 0 + 0 + 2 = 2$$

Una vez calculado éste vamos a calcular la inversa que nos piden:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & -1 & 0 \end{pmatrix} \xrightarrow{Menores} \begin{pmatrix} 2 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 2 & 0 \end{pmatrix} \xrightarrow{Adjuntos} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & -2 & 0 \end{pmatrix} \xrightarrow{Traspuesta}$$

$$\xrightarrow{Traspuesta} \left(\begin{array}{ccc} 2 & -1 & 0 \\ 0 & 0 & -2 \\ 0 & 1 & 0 \end{array} \right)$$

Por tanto:

$$A^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -1 & 0 \\ 0 & 0 & -2 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$$

Terminemos calculando el determinante de la matriz B que nos piden:

$$|B| = \left|\frac{1}{2}A^3\right| \stackrel{(*)}{=} \left(\frac{1}{2}\right)^3 |A|^3 = \frac{1}{2^3}2^3 = 1$$

(*) Ten en cuenta que la matriz A es de orden 3, de ahí que $\frac{1}{2}$ vaya elevado al cubo. Además has de tener en cuenta que $|A^3| = |A \cdot A \cdot A| = |A| \cdot |A| \cdot |A| = |A|^3$.

2.1.34. Considere las matrices
$$B = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$
, $C = \begin{pmatrix} 5 & 0 & -5 \\ 0 & 1 & 1 \\ -5 & -1 & 5 \end{pmatrix}$.

- a) Calcule la matriz $A = 3B^2 C$.
- b) Halle la inversa A^{-1} de la matriz A.

(Julio 14)

- Solución:

Calculemos primero la matriz B^2 .

$$B^{2} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & 2 \end{pmatrix}$$

Calculemos la matriz A que nos piden.

$$A = 3 \cdot \begin{pmatrix} 2 & 0 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 5 & 0 & -5 \\ 0 & 1 & 1 \\ -5 & -1 & 5 \end{pmatrix} = \begin{pmatrix} 6 & 0 & -6 \\ 0 & 3 & 0 \\ -6 & 0 & 6 \end{pmatrix} - \begin{pmatrix} 5 & 0 & -5 \\ 0 & 1 & 1 \\ -5 & -1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$

Vamos a calcular el determinate de A.

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & 1 & 1 \end{vmatrix} = 2 - 2 + 1 = 1$$

Luego tiene inversa. Vamos a calcularla.

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & 1 & 1 \end{pmatrix} \xrightarrow{Menores} \begin{pmatrix} 3 & -1 & 2 \\ 1 & 0 & 1 \\ 2 & -1 & 2 \end{pmatrix} \xrightarrow{Adjuntos} \begin{pmatrix} 3 & 1 & 2 \\ -1 & 0 & -1 \\ 2 & 1 & 2 \end{pmatrix} \xrightarrow{Traspuesta}$$

$$\xrightarrow{Traspuesta} \begin{pmatrix} 3 & -1 & 2 \\ 1 & 0 & 1 \\ 2 & -1 & 2 \end{pmatrix}$$

Por tanto:

$$A^{-1} = \frac{1}{1} \begin{pmatrix} 3 & -1 & 2 \\ 1 & 0 & 1 \\ 2 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 0 & 1 \\ 2 & -1 & 2 \end{pmatrix}$$

2.2. Sistemas de ecuaciones

2.2.1. La matriz de coeficientes de un sistema de ecuaciones lineales homogéneo es M. Hallar un sistema equivalente tal que todos los elementos de la diagonal principal de la nueva matriz asociada sean nulos:

$$M = \left(\begin{array}{rrr} -1 & 0 & 3\\ 3 & 1 & 1\\ 0 & 2 & 1 \end{array}\right)$$

(Junio 00)

- Solución:

Vamos a aplicar el método de Gauss para hacer los ceros que nos piden.

$$\begin{pmatrix} -1 & 0 & 3 \\ 3 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix} \xrightarrow{F_3 = F_3 - F_2} \begin{pmatrix} -1 & 0 & 3 \\ 3 & 1 & 1 \\ -3 & 1 & 0 \end{pmatrix} \xrightarrow{F_2 = F_2 - F_3} \begin{pmatrix} -1 & 0 & 3 \\ 6 & 0 & 1 \\ -3 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{F_1=3F_1-F_3} \left(\begin{array}{ccc} 0 & -1 & 9 \\ 6 & 0 & 1 \\ -3 & 1 & 0 \end{array} \right)$$

La matriz buscada es:

$$M' = \left(\begin{array}{ccc} 0 & -1 & 9\\ 6 & 0 & 1\\ -3 & 1 & 0 \end{array}\right)$$

2.2.2. Dar un ejemplo de un sistema de 2 ecuaciones lineales con 3 incógnitas que sea incompatible.

(Junio 00)

- Solución:

$$\left. \begin{array}{l} x + y + z = 1 \\ x + y + z = 2 \end{array} \right\}$$

2.2.3. Discutir el siguiente sistema de ecuaciones lineales según el parámetro a:

(Septiembre 00)

- Solución:

La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|c}
a-3 & 0 & 4 & 2 \\
1 & 0 & -2 & -1 \\
-1 & a & 2 & a
\end{array}\right)$$

Vamos a empezar por estudiar el rango de la matriz de los coeficientes:

$$\begin{vmatrix} a-3 & 0 & 4 \\ 1 & 0 & -2 \\ -1 & a & 2 \end{vmatrix} = 4a + 2a(a-3) = 4a + 2a^2 - 6a = 2a^2 - 2a$$

Igualando a cero resulta:

$$2a^2 - 2a = 0 \Longrightarrow (2a - 2) a = 0 \Longrightarrow \begin{cases} a = 0 \\ a = 1 \end{cases}$$

Vamos pues a estudiar cada caso.

- Si $a \neq 0, 1 \Longrightarrow RgA = RgA' = 3 = n^o$ de incógnitas \Longrightarrow S. C. Determinado.
- Si a = 0 la matriz que resulta es:

$$\left(\begin{array}{ccc|c}
-3 & 0 & 4 & 2 \\
1 & 0 & -2 & -1 \\
-1 & 0 & 2 & 0
\end{array}\right)$$

Las filas segunda y tercera hacen que el sistema sea incompatible.

• Si a = 1 la matriz que obtenemos es:

$$\left(\begin{array}{ccc|c}
-2 & 0 & 4 & 2 \\
1 & 0 & -2 & -1 \\
-1 & 1 & 2 & 1
\end{array}\right)$$

Vamos a estudiar el rango de A y A' para ver como sería.

Es evidente que el rango de la matriz de los coeficientes es 2, pues tenemos:

$$\left| \begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array} \right| = 1 \neq 0$$

Vamos a ver que pasa con la matriz ampliada. Su rango es igual a dos, pues las filas primera y segunda son proporcionales.

Por tanto el sistema es compatible indeterminado, pues

$$RqA = 2 = RqA' < 3 = n^o$$
 de incógnitas

2.2.4. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

(Junio 01)

2.2. Sistemas de ecuaciones 123

- Solución:

La matriz asociada a nuestro sistema es:

$$A = \left(\begin{array}{ccc|c} a & -a & a & a \\ 0 & 0 & 3 - 2a & 1 \\ 1 & a - 1 & 0 & 0 \end{array}\right)$$

Veamos donde el determinante de la matriz de los coeficientes es cero.

$$\begin{vmatrix} a & -a & a \\ 0 & 0 & 3 - 2a \\ 1 & a - 1 & 0 \end{vmatrix} = -a(3 - 2a) - a(a - 1)(3 - 2a) = -3a + 2a^2 - (3a^2 - 2a^3 - 3a + 2a^2) = -3a + 2a^2 - (3a^2 - 2a^3 - 2a^2) = -3a + 2a^2 - (3a^2 - 2a^3 - 2a^2) = -3a + 2a^2 - (3a^2 - 2a^3 - 2a^2) = -3a + 2a^2 - (3a^2 - 2a^2 - 2a^2) = -3a + 2a^2 - (3a^2 - 2a^2 - 2a^2) = -3a + 2a^2 - (3a^2 - 2a^2 - 2a^2) = -3a + 2a^2 - (3a^2 - 2a^2 - 2a^2) = -3a + 2a^2 - (3a^2 - 2a^2 - 2a^2) = -3a + 2a^2 - (3a^2 - 2a^2 - 2a^2) = -3a + 2a^2 - (3a^2 - 2a^2 - 2a^2) = -3a + 2a^2 - (3a^2 - 2a^$$

$$= -3a + 2a^2 - 3a^2 + 2a^3 + 3a - 2a^2 = 2a^3 - 3a^2 = 0 \Longrightarrow \begin{cases} a^2 = 0 \Longrightarrow a = 0 \\ 2a - 3 = 0 \Longrightarrow a = \frac{3}{2} \end{cases}$$

Por tanto:

- Si $a \neq 0, \frac{3}{2} \Longrightarrow RgA = RgA' = 3 = n^o$ incógnitas \Longrightarrow Sistema Compatible Determinado.
- Si a = 0 la matriz es:

$$A = \left(\begin{array}{ccc|c} 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 1 & -1 & 0 & 0 \end{array}\right)$$

Como la primera fila es entera de ceros, y es evidente que hay menores de orden 2 distintos de cero, por lo que tenemos que:

 $RgA = 2 = RgA' < n^o$ incógnitas \Longrightarrow Sistema compatible indeterminado.

• Si $a = \frac{3}{2}$ la matriz que resulta es:

$$A = \left(\begin{array}{ccc|c} \frac{3}{2} & -\frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\ 0 & 0 & 0 & 1 \\ 1 & \frac{1}{2} & 0 & 0 \end{array}\right)$$

Como la segunda fila crea una imposiblidad tenemos que el sistema es incompatible para dicho valor.

2.2.5. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

(Junio 02)

- Solución:

La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|c}
0 & a & a+1 & a \\
a & 0 & 1 & a \\
1 & 0 & a & a
\end{array}\right)$$

Vamos a empezar por estudiar el rango de A, ya que es una matriz cuadrada.

$$\begin{vmatrix} 0 & a & a+1 \\ a & 0 & 1 \\ 1 & 0 & a \end{vmatrix} = a - a^3 = 0 \Longrightarrow a(1 - a^2) = 0 \Longrightarrow \begin{cases} a = 0 \\ 1 - a^2 = 0 \Longrightarrow a = \pm 1 \end{cases}$$

Luego:

- Si $a \neq 0, 1, -1 \Longrightarrow RgA = 3 = RgA' = n^{\circ}$ incógnitas \Longrightarrow S. C. Determinado.
- Si a = 0 la matriz que nos queda es:

$$\left(\begin{array}{ccc|c}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)$$

El sistema es compatible por ser homogéneo. Además la 1ª y la 2ª fila son iguales y hay un menor de orden dos que es distinto de cero (formado por las filas 1 y 3, y las columnas 1 y 3). Por tanto el RgA = 2. En consecuencia:

$$RgA = 2 = RgA' < 3 = n^{\circ}$$
 incógnitas \Longrightarrow S. C. Indeterminado.

- Si a = 1 la matriz es:

$$\left(\begin{array}{ccc|c} 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{array}\right)$$

Las filas 2^a y 3^a son iguales, pero hay un menor de orden dos que es distinto de cero (formado por las filas 1 y 2, y las columnas 2 y 3). Por tanto el RgA = 2. Veamos el rango de la ampliada.

$$\left| \begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right| = 1 - 1 = 0$$

Luego el RgA' = 2 y por tanto:

$$RgA = 2 = RgA' < 3 = n^{\circ}$$
 incógnitas \Longrightarrow S. C. Indeterminado.

- Si a = -1 la matriz resultante es:

$$\left(\begin{array}{ccc|c}
0 & -1 & 0 & -1 \\
-1 & 0 & 1 & -1 \\
1 & 0 & -1 & -1
\end{array}\right)$$

Es fácil observar que las filas 2ª y 3ª son incompatibles, luego el sistema, para este valor, es incompatible.

2.2.6. La matriz de coeficientes de un sistema de ecuaciones lineales homogéneo es M. Hallar un sistema equivalente tal que los tres coeficientes que están por encima de la diagonal principal de la nueva matriz asociada sean nulos:

$$M = \left(\begin{array}{rrr} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 0 & 4 & 4 \end{array}\right)$$

(Septiembre 02)

- Solución:

Vamos a conseguir los ceros que nos piden utilizando el método de Gauss.

$$\begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 0 & 4 & 4 \end{pmatrix} \xrightarrow{F_1 \longleftrightarrow F_2} \begin{pmatrix} -1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 4 & 4 \end{pmatrix} \xrightarrow{F_3 = F_3 - 4F_2} \begin{pmatrix} -1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 8 \end{pmatrix}$$

$$\frac{F_1 = 4F_1 - F_3}{F_2 = 8F_2 + F_3} \left(\begin{array}{ccc}
-4 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8
\end{array} \right)$$

Esta sería la matriz asociada al sistema buscado.

2.2.7. Discutir el siguiente sistema de ecuaciones lineales según los valores del parámetro a:

(Septiembre 02)

- Solución:

La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|c}
0 & a & a & 0 \\
1 & 0 & 1 & 0 \\
4 & -2 & a & a
\end{array}\right)$$

Vamos a ver el determinante de la matriz de los coeficientes:

$$|A| = \begin{vmatrix} 0 & a & a \\ 1 & 0 & 1 \\ 4 & -2 & a \end{vmatrix} = 4a - 2a - a^2 = -a^2 + 2a$$

Igualando a cero obtenemos los valores que anulan el determinante.

$$-a^2 + 2a = 0 \Longrightarrow \begin{cases} a = 0 \\ a = 2 \end{cases}$$

En consecuencia tenemos que:

• Si $a \neq 0, 2$ el sistema va a ser compatible determinado.

 \blacksquare Si a=0 la matriz asociada es:

$$\left(\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
4 & -2 & 0 & 0
\end{array}\right)$$

Se trata de un sistema homogéneo. Tiene una fila de ceros, luego el rango no puede ser tres y además $\begin{vmatrix} 1 & 0 \\ 4 & -2 \end{vmatrix} = -2 \neq 0$. Por tanto el sistema es compatible indeterminado y necesita un parámetro.

$$RgA = RgA' = 2 < 3 = n^o$$
 de incógnitas.

• Si a = 2 la matriz queda:

$$\left(\begin{array}{ccc|c}
0 & 2 & 2 & 0 \\
1 & 0 & 1 & 0 \\
4 & -2 & 2 & 2
\end{array}\right)$$

El rango de la matriz de los coeficientes es dos, pues $\begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} = -2 \neq 0$.

En cambio la matriz ampliada tiene rango tres, pues

$$\begin{vmatrix} 0 & 2 & 0 \\ 1 & 0 & 0 \\ 4 & -2 & 2 \end{vmatrix} = -4 \neq 0 \Longrightarrow RgA = 2 \neq 3 = RgA'$$

Por tanto el sistema para este valor es incompatible.

2.2.8. Determinar el valor del parámetro a para que las siguientes ecuaciones lineales sean linealmente dependientes

$$x + y + z = 1$$

$$3x + 2y + z = 1$$

$$y + 2z = a$$

(Junio 03)

- Solución:

La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
3 & 2 & 1 & 1 \\
0 & 1 & 2 & a
\end{array}\right)$$

Para que ocurra lo que nos piden, el sistema ha de ser compatible indeterminado, es decir, $RgA = RgA' < n^o$ de incógnitas. Veamos cuanto vale el rango de A.

-
$$RgA \ge 2$$
 pues $\begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} = -1 \ne 0.$

- RgA = 2 pues:

$$\begin{vmatrix} 1 & 1 & 1 \\ 3 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} = 4 + 3 - 6 - 1 = 0$$

Por tanto se producirá lo que piden si el RgA' = 2, es decir, si

$$0 = \begin{vmatrix} 1 & 1 & 1 \\ 3 & 2 & 1 \\ 0 & 1 & a \end{vmatrix} = 2a + 3 - 3a - 1 = -a + 2 = 0 \Longrightarrow a = 2$$

2.2.9. Dar un ejemplo de una sistema de 3 ecuaciones lineales con tres incógnitas que sea compatible e indeterminado. Interprétalo geométricamente.

(Septiembre 03)

- Solución:

Un ejemplo válido es:

$$\begin{cases}
 x + y + z = 1 \\
 2x - y = 3 \\
 3x + z = 4
 \end{cases}$$

En este ejemplo hemos elegido dos ecuaciones independientes y la tercera la hemos obtenido sumando las dos primeras.

Geométricamente hablando pueden existir varias posibilidades.

- Pueden ser tres planos que se cortan en una recta (para ejemplo vale el anterior).
- Pueden ser también tres planos coincidentes (tres ecuaciones proporcionales).
- Pueden ser dos planos coincidentes y otro que los corte (dos ecuaciones proporcionales y una independiente de ellas).

2.2.10. Determinar un valor del parámetro a para que el siguiente sistema de ecuaciones lineales sea compatible e indeterminado.

$$x +y +z = a$$

$$x -y +z = 1$$

$$x -3y +z = 0$$

(Junio 05)

- Solución:

La matriz asociada al sistema será:

$$\mathbf{A} = \left(\begin{array}{ccc|c} 1 & 1 & 1 & a \\ 1 & -1 & 1 & 1 \\ 1 & -3 & 1 & 0 \end{array} \right)$$

Vamos a estudiar el rango de la matriz de los coeficiente y despues veremos la ampliada.

-
$$RgA \ge 2$$
 pues tenemos que $\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -1 - 1 = -2 \ne 0$

Además el RgA = 2, pues las columnas primera y tercera de la matriz de los coeficiente son iguales.

Para que el sistema sea compatible e indeterminado la matriz ampliada tiene que tener rango 2, es decir,

$$\begin{vmatrix} 1 & 1 & a \\ 1 & -1 & 1 \\ 1 & -3 & 0 \end{vmatrix} = 1 - 3a + a + 3 = -2a + 4 = 0 \Longrightarrow a = 2$$

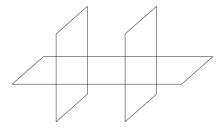
128

2.2.11. Dar un ejemplo de un sistema de 3 ecuaciones lineales con tres incógnitas que sea incompatible. Interprétalo geométricamente.

(Junio 05)

- Solución:

Tenemos varias opciones. Por ejemplo, podemos considerar dos planos paralelos y uno que corte a ambos.

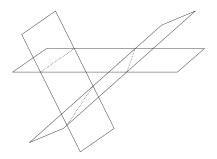


$$\left. \begin{array}{cccc} x & +y & +z & = 3 \\ x & +y & +z & = 5 \\ 2x & -y & +z & = 3 \end{array} \right\}$$

En este ejemplo, las dos primeras ecuaciones representan planos paralelos y la tercera corta a los dos. Es obvio que no tienen ningún punto en común, por lo que el sistema es incompatible.

Otra opción es coger dos planos que se corten, sumar sus ecuaciones (con lo que obtendríamos un plano que se corta en la misma recta que los anteriores) y al resultante cambiarle el término independiente, con lo que obtenemos un plano paralelo al último que no pasaría por la recta de corte de los dos planos, y con ello no tendrían ningún punto en común.

$$\begin{array}{cccc}
x & +y & +z & = 3 \\
2x & -y & +z & = 3 \\
3x & +2z & = 8
\end{array}$$



Otra posibilidad son dos planos coincidentes y uno paralelo, o bien tres planos paralelos.

2.2. Sistemas de ecuaciones 129

2.2.12. Resolver el sistema de ecuaciones lineales

$$y -x = z$$

$$x -z = y$$

$$y +z = x$$

(Septiembre 05)

- Solución:

La matriz asociada al sistema es:

$$A = \left(\begin{array}{ccc|c} -1 & 1 & -1 & 0 \\ 1 & -1 & -1 & 0 \\ -1 & 1 & 1 & 0 \end{array}\right)$$

Se trata de un sistema homogéneo, luego es compatible. Veremos cuanto vale el RgA para decidir si es determinado o indeterminado.

Es evidente que $RgA \ge 2$ pues

$$\left| \begin{array}{cc} 1 & -1 \\ -1 & -1 \end{array} \right| = -1 - 1 = -1 \neq 0$$

Veamos cuanto vale el |A|.

$$|A| = \begin{vmatrix} -1 & 1 & -1 \\ 1 & -1 & -1 \\ -1 & 1 & 1 \end{vmatrix} = 1 + 1 - 1 + 1 - 1 - 1 = 0$$

Luego resulta que el $RgA=2\Longrightarrow El$ sistema es compatible indeterminado y necesita un parámetro.

Vamos a resolverlo:

Hacemos $x = \lambda$. Para eso usamos las filas que dan rango 2 y resolviendo por reducción tenemos:

$$\begin{array}{cccc}
\mathscr{G} & -z & = & \chi \\
\mathscr{G} & -z & = & \chi \\
\hline
-2z & = & 0 \\
z & = & 0
\end{array}$$

Si
$$x = \lambda$$
; $z = 0 \Longrightarrow y = \lambda$.

Por tanto la solución es $(\lambda, \lambda, 0)$.

2.2.13. Dar un sistema de tres ecuaciones lineales con tres incógnitas que sea compatible e indeterminado. Interpretarlo geométricamente.

(Septiembre 05)

- Solución:

El sistema será compatible cuando los rangos de la matriz de coeficientes y la ampliada coincidan y será indeterminado cuando éste sea menor que el número de incógnitas. En nuestro caso ocurrirá cuando el rango de la matriz de los coeficientes valga 1 ó 2. Por tanto, o bien tomamos dos ecuaciones linealmente independientes y las sumamos (RgA = 2), o bien cogemos una ecuación y la repetimos dos veces multiplicada por distintos números (RgA = 1). También vale para el primer caso dos ecuaciones proporcionales y una que sea linealmente independiente con ellas.

Valdrían como ejemplo los siguientes:

Para RgA = 2 tendríamos:

$$\left. \begin{array}{rrrrr}
 2x & + & 3y & - & 2z & = 3 \\
 x & - & y & + & z & = 4 \\
 3x & + & 2y & - & z & = 7
 \end{array} \right\}$$

Para RgA = 1 nos vale:

Geométricamente el primer caso representa tres planos que se cortan en una recta, o dos coincidentes y uno que los corta y el segundo tres planos coincidentes.

2.2.14. Discute el sistema de ecuaciones lineales

según los valores de b.

(Junio 06)

- Solución:

La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|c}
1 & 2 & -1 & 2 \\
1 & 1+b & -b & 2b \\
1 & b & 1+b & 1
\end{array}\right)$$

Vamos a calcular el determinante de la matriz de coeficientes para realizar el estudio.

$$+b - 2 - 2b + b^2 = 2b^2 - 2b = 0 \implies b = 0 \text{ v } b = 1$$

Luego:

- Si $b \neq 0, 1 \Longrightarrow$ El sistema es compatible determinado.
- Si b = 0 la matriz quedaría:

$$\left(\begin{array}{ccc|c}
1 & 2 & -1 & 2 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1
\end{array}\right)$$

En este caso tenemos que RgA = 2 pues

$$\left| \begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array} \right| = 1 - 2 = -1 \neq 0$$

Veamos cuanto vale el RgA'.

$$\begin{vmatrix} 1 & 2 & 2 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = 1 - 2 - 2 = -3 \neq 0$$

Por tanto $RgA = 2 \neq 3 = RgA' \Longrightarrow$ El sistema es incompatible.

• Si b = 1 a matriz quedaría:

$$\left(\begin{array}{ccc|c}
1 & 2 & -1 & 2 \\
1 & 2 & -1 & 2 \\
1 & 1 & 2 & 1
\end{array}\right)$$

En este caso RgA = 2, pues

$$\left|\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right| = 1 - 2 = -1 \neq 0$$

y a su vez coincide con el RgA', ya que la primera y la segunda fila coinciden.

Por tanto $RgA = 2 = RgA' < 3 = n^o$ de incógnitas \Longrightarrow El sistema es compatible indeterminado y necesita un parámetro para su resolución.

2.2.15. Resuelve el sistema de ecuaciones lineales

$$x +2y -z = 1$$

$$x +y -z = 1$$

$$x -z = 1$$

(Septiembre 06)

131

- Solución:

La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|c}
1 & 2 & -1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 0 & -1 & 1
\end{array}\right)$$

Vamos a resolverlo por el método de Gauss, pues parece cómodo.

$$\begin{pmatrix} 1 & 2 & -1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{F_2 = F_2 - F_1} \begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & -2 & 0 & 0 \end{pmatrix}$$

Las filas segunda y tercera son proporcionales, luego sobra una y el sistema es compatible indeterminado.

De la segunda ecuación deducimos que y=0. Si en la primera ecuación sustituimos y=0 y hacemos $z=\lambda$ resulta:

$$x - \lambda = 1 \Longrightarrow x = 1 + \lambda$$

Por tanto la solución del sistema es:

$$\left. \begin{array}{rcl}
x & = & 1 & + & \lambda \\
y & = & 0 & \\
z & = & \lambda
\end{array} \right\}$$

Otra forma de resolverlo es darnos cuenta que, observando las dos primeras ecuaciones, y es igual a 0. Visto esto las ecuaciones resultantes son todas iguales, luego con una de ellas calculamos x en función de z.

2.2.16.

- a) Enuncia el Teorema de Rouché-Frobenius.
- b) Discute el siguiente sistema de ecuaciones lineales, según los valores del parámetro a:

$$x +y +z = a$$

$$x +y +az = 1$$

$$x +ay +z = 1$$

(Junio 07)

- Solución:
 - a) Es teoría que podemos encontrar en cualquier libro.
 - b) La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & a \\ 1 & 1 & a & 1 \\ 1 & a & 1 & 1 \end{array}\right)$$

Calculamos el determinante de la matriz de los coeficiente:

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & a \\ 1 & a & 1 \end{vmatrix} = 1 + a + a - 1 - a^2 - 1 = -a^2 + 2a - 1$$

Igualando a cero resulta:

$$-a^{2} + 2a - 1 = 0 \Longrightarrow a^{2} - 2a + 1 = 0 \Longrightarrow a = 1$$

Luego:

- Si $a \neq 1$ el sistema es compatible determinado.
- Si a = 1 la matriz queda:

y el $RgA = 1 = RgA' < n^o$ de incógnitas \Longrightarrow El sistema es compatible indeterminado (necesita dos parámetros)

2.2.17. Discute, en función del parámetro a, el sistema de ecuaciones (NO es necesario resolverlo en ningún caso)

(Junio 08)

- Solución:

La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|ccc}
-1 & 2 & 1 & 1 \\
a & -1 & 2 & 2 \\
2 & 0 & a-1 & 2
\end{array}\right)$$

Veamos donde el determinante de la matriz de los coeficientes vale 0:

$$\begin{vmatrix} -1 & 2 & 1 \\ a & -1 & 2 \\ 2 & 0 & a-1 \end{vmatrix} = a - 1 + 8 + 2 - 2a(a-1) = a - 1 + 8 + 2 - 2a^2 + 2a = -2a^2 + 3a + 9 = 0$$

Vamos a resolver la ecuación:

$$a = \frac{-3 \pm \sqrt{9 + 72}}{-4} = \frac{-3 \pm 9}{-4} = \begin{bmatrix} \frac{-3 + 9}{-4} = \frac{6}{-4} = -\frac{3}{2} \\ \frac{-3 - 9}{-4} = \frac{-12}{-4} = 3 \end{bmatrix}$$

Por tanto:

- Si $a \neq -\frac{3}{2}, 3 \Longrightarrow RgA = RgA' = 3 \Longrightarrow$ Sistema Compatible Determinado.
- Si $a = -\frac{3}{2}$ la matriz resultantes es:

$$\left(\begin{array}{ccc|c}
-1 & 2 & 1 & 1 \\
-\frac{3}{2} & -1 & 2 & 2 \\
2 & 0 & -\frac{5}{2} & 2
\end{array}\right)$$

Tenemos que RgA = 2, pues

$$\left| \begin{array}{cc} -\frac{3}{2} & -1\\ 2 & 0 \end{array} \right| = 2 \neq 0$$

Vamos a estudiar el rango de la matriz ampliada.

$$\begin{vmatrix} -1 & 2 & 1 \\ -\frac{3}{2} & -1 & 2 \\ 2 & 0 & 2 \end{vmatrix} = 2 + 8 + 2 + 6 = 18 \neq 0$$

Luego RgA' = 3.

De aquí deducimos que:

 $RgA = 2 \neq 3 = RgA' \Longrightarrow$ Sistema incompatible.

- Si a=3 la matriz que queda es:

$$\left(\begin{array}{ccc|c}
-1 & 2 & 1 & 1 \\
3 & -1 & 2 & 2 \\
2 & 0 & 2 & 2
\end{array}\right)$$

134

Tenemos que RgA = 2, pues

$$\left|\begin{array}{cc} 3 & -1 \\ 2 & 0 \end{array}\right| = 2 \neq 0$$

Vamos a estudiar el rango de la matriz ampliada.

$$\begin{vmatrix} -1 & 2 & 1 \\ 3 & -1 & 2 \\ 2 & 0 & 2 \end{vmatrix} = 2 + 8 + 2 - 12 = 0$$

Luego RgA' = 2.

De aquí deducimos que:

 $RgA = 2 = RgA' < n^o$ de incógnitas \Longrightarrow El sistema es compatible indeterminado (necesita un parámetro)

2.2.18. Discute el siguiente sistema de ecuaciones lineales, según el valor del parámetro a:

$$ax + ay = 0$$

$$x + z = a$$

$$-2y + az = a$$

No es necesario resolver el sistema en ningún caso.

(Septiembre 08)

- Solución:

La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|c}
a & a & 0 & 0 \\
1 & 0 & 1 & a \\
0 & -2 & a & a
\end{array}\right)$$

Vamos a empezar estudiando el determinante de la matriz de los coeficientes:

$$\begin{vmatrix} a & a & 0 \\ 1 & 0 & 1 \\ 0 & -2 & a \end{vmatrix} = -a^2 + 2a = 0 \Longrightarrow a(-a+2) = 0 \Longrightarrow \begin{bmatrix} a = 0 \\ a = 2 \end{bmatrix}$$

Por tanto:

- Si $a \neq 0, 2 \Longrightarrow RgA = RgA' = 3 \Longrightarrow$ Sistema Compatible Determinado.
- Si a=0 la matriz resultantes es:

$$\left(\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & -2 & 0 & 0
\end{array}\right)$$

Es evidente que sobra la primera fila. Además el sistema resultante es homogéneo y por tanto compatible. También es obvio que la segunda y tercera fila son linealmente independientes.

En consecuencia:

 $RgA=RgA'=2<3=\mathrm{n}^{\mathrm{o}}$ de incognitas \Longrightarrow Sistema compatible indeterminado.

- Si a=2 la matriz que queda es:

$$\left(\begin{array}{ccc|c}
2 & 2 & 0 & 0 \\
1 & 0 & 1 & 2 \\
0 & -2 & 2 & 2
\end{array}\right)$$

Tenemos que RgA = 2, pues

$$\left|\begin{array}{cc} 2 & 2 \\ 1 & 0 \end{array}\right| = -2 \neq 0$$

Vamos a estudiar el rango de la matriz ampliada.

$$\left| \begin{array}{ccc} 2 & 2 & 0 \\ 1 & 0 & 2 \\ 0 & -2 & 2 \end{array} \right| = -4 + 8 = 4 \neq 0$$

Luego RgA' = 3.

De aquí deducimos que:

 $RgA = 2 \neq 3 = RgA' \Longrightarrow$ Sistema incompatible.

2.2.19.

a) Discute el sistema de ecuaciones lineales:

b) Resuelve el anterior sistema.

(Junio 10 - Fase general)

- Solución:
 - a) La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|ccc}
2 & -1 & 1 & 1 \\
-1 & 1 & -1 & 0 \\
0 & 1 & -1 & 1
\end{array}\right)$$

Vamos a empezar por estudiar el rango de la matriz de los coeficientes.

Tenemos que:

$$\begin{vmatrix} 2 & -1 \\ -1 & 1 \end{vmatrix} = 2 - 1 = 1 \neq 0 \Longrightarrow RgA \geqslant 2$$

Por otro lado el determinate de dicha matriz de coeficientes es:

$$\begin{vmatrix} 2 & -1 & 1 \\ -1 & 1 & -1 \\ 0 & 1 & -1 \end{vmatrix} = -2 - 1 + 1 + 2 = 0 \Longrightarrow RgA = 2$$

Veamos ahora el rango de la matriz ampliada. Sabemos que $RgA' \ge 2$, pues nos vale el mismo menor que sirvió para el RgA. Bastará con ver que ocurre con el menor:

$$\begin{vmatrix} 2 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 2 - 1 - 1 = 0$$

En consecuencia tenemos que $RgA = RgA' = 2 < 3 = n^{\circ}$ de incógnitas, por tanto el sistema es compatible indeterminado y necesitaré un parámetro para su resolución.

b) Del estudio anterior también deducimos que me "sobra" la última ecuación y que tengo que transformar en parámetro la incógnita z.

Por tanto el sistema queda de la siguiente forma:

Aplicando el método de reducción tenemos:

Sustituyendo este valor en la segunda ecuación se tendría que $y=\lambda+1$ Luego la solución del sistema es:

$$\begin{cases}
 x = 1 \\
 y = 1 + \lambda \\
 z = \lambda
 \end{cases}$$

2.2.20. Discute, en función del parámetro b, el sistema de ecuaciones

$$\begin{cases}
 bx + by & = 1 \\
 3x + bz = b-2 \\
 - y + z = b-3
 \end{cases}$$

(no es necesario resolverlo en ningún caso).

(Junio 10 - Fase específica)

- Solución:

La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|c}
b & b & 0 & 1 \\
3 & 0 & b & b-2 \\
0 & -1 & 1 & b-3
\end{array}\right)$$

Comenzaremos por estudiar el determinante de la matriz de los coeficientes.

$$\begin{vmatrix} b & b & 0 \\ 3 & 0 & b \\ 0 & -1 & 1 \end{vmatrix} = b^2 - 3b = 0 \Longrightarrow \begin{bmatrix} b = 0 \\ b = 3 \end{bmatrix}$$

Estudiemos los distintos casos:

- Si $b \neq 0, 3 \Longrightarrow RgA = RgA' = 3 = n^{\circ}$ incógnitas \Longrightarrow S. Compatible Determinado.
- Si b = 0 la matriz que tenemos es:

$$\left(\begin{array}{ccc|c}
0 & 0 & 0 & 1 \\
3 & 0 & 0 & -2 \\
0 & -1 & 1 & -3
\end{array}\right)$$

Sabemos que RgA=2, pues $\left|\begin{array}{cc} 3 & 0 \\ 0 & -1 \end{array}\right|=-3\neq 0.$

Vamos a ver el rango de la ampliada.

$$\begin{vmatrix} 0 & 0 & 1 \\ 3 & 0 & -2 \\ 0 & -1 & -3 \end{vmatrix} = -3 \neq 0$$

Luego $RgA = 2 \neq 3 = RgA' \Longrightarrow$ Sistema Incompatible.

• Si b = 3 la matriz que tenemos es:

$$\left(\begin{array}{ccc|c}
3 & 3 & 0 & 1 \\
3 & 0 & 3 & 1 \\
0 & -1 & 1 & 0
\end{array}\right)$$

Sabemos que RgA = 2, pues $\begin{vmatrix} 3 & 3 \\ 3 & 0 \end{vmatrix} = -9 \neq 0$.

Vamos a ver el rango de la ampliada.

$$\begin{vmatrix} 3 & 3 & 1 \\ 3 & 0 & 1 \\ 0 & -1 & 0 \end{vmatrix} = -3 + 3 = 0$$

Por tanto $RgA = 2 = RgA' \neq 3 = n^{\circ}$ incognitas \Longrightarrow Sistema compatible indeterminado (1 parámetro).

2.2.21.

a) Diga, justificando la respuesta, si es de Cramer el siguiente sistema de ecuaciones:

b) Resuelva el anterior sistema de ecuaciones.

- Solución:

Sabemos que un sistema es de Cramer si la matriz de los coeficientes es una matriz regular, es decir, su determinante es distinto de cero.

$$\begin{vmatrix} 0 & 1 & -1 \\ -1 & 0 & 4 \\ 0 & 2 & -1 \end{vmatrix} = 2 - 1 = 1 \neq 0$$

Luego el sistema es de Cramer.

Vamos a resolverlo por la regla de Cramer.

$$x = \frac{\begin{vmatrix} 1 & 1 & -1 \\ 0 & 0 & 4 \\ 1 & 2 & -1 \end{vmatrix}}{|A|} = \frac{4-8}{1} = -4$$

$$y = \frac{\begin{vmatrix} 0 & 1 & -1 \\ -1 & 0 & 4 \\ 0 & 1 & -1 \end{vmatrix}}{|A|} = \frac{1-1}{1} = 0$$

$$z = \frac{\begin{vmatrix} 0 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & 2 & 1 \end{vmatrix}}{|A|} = \frac{-2+1}{1} = -1$$

2.2.22. Discuta, en función del parámetro a, el sistema de ecuaciones

(no es necesario resolverlo en ningún caso).

(Septiembre 10 - Fase específica)

- Solución:

La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|ccc}
1 & 1 & 0 & a+1 \\
-2 & -1 & a & -2 \\
a+1 & 1 & -1 & 2
\end{array}\right)$$

Vamos a estudiar el determinante de la matriz de los coeficientes.

$$\begin{vmatrix} 1 & 1 & 0 \\ -2 & -1 & a \\ a+1 & 1 & -1 \end{vmatrix} = 1 + a(a+1) - 2 - a = 1 + a^2 + a - 2 - a = a^2 - 1 = 0$$
$$= a^2 - 1 = 0 \Longrightarrow a = \pm 1$$

Por tanto:

• Si $a \neq \pm 1 \Longrightarrow RgA = RgA' = 3 = n^{\circ}$ incógnitas \Longrightarrow Sistema compatible determinado.

■ Si a = 1 la matriz resultante es:

$$\left(\begin{array}{ccc|ccc}
1 & 1 & 0 & 2 \\
-2 & -1 & 1 & -2 \\
2 & 1 & -1 & 2
\end{array}\right)$$

Tenemos que
$$RgA=2$$
, pues $\begin{vmatrix} 1 & 1 \\ -2 & -1 \end{vmatrix} = 1 \neq 0$.

Veamos cual es el rango de la ampliada.

$$\begin{vmatrix} 1 & 1 & 2 \\ -2 & -1 & -2 \\ 2 & 1 & 2 \end{vmatrix} = 0 \qquad \text{Pues } c_3 = 2c_2$$

Luego $RgA = RgA' = 2 \neq 3 = n^{\circ}$ incógnitas \Longrightarrow Sistema compatible indeterminado.

■ Si a = -1 la matriz resultante es:

$$\left(\begin{array}{ccc|ccc}
1 & 1 & 0 & 0 \\
-2 & -1 & -1 & -2 \\
0 & 1 & -1 & 2
\end{array}\right)$$

De nuevo
$$RgA = 2$$
, pues $\begin{vmatrix} 1 & 1 \\ -2 & -1 \end{vmatrix} = 1 \neq 0$.

Veamos cual es el rango de la ampliada.

$$\begin{vmatrix} 1 & 1 & 0 \\ -2 & -1 & -2 \\ 0 & 1 & 2 \end{vmatrix} = -2 + 4 + 2 = 4 \neq 0$$

Luego $RgA = 2 \neq 3 = RgA' \Longrightarrow$ Sistema incompatible.

2.2.23. Discuta, en función del parámetro a, el sistema de ecuaciones

$$\left\{
 \begin{array}{rclrcr}
 -x & + & 2y & + & z & = & a \\
 x & + & (a-1)y & + & az & = & 0 \\
 ax & + & 2y & + & z & = & -1
 \end{array}
\right\}$$

(no es necesario resolverlo en ningún caso).

(Junio 11)

- Solución:

La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|ccc|c}
-1 & 2 & 1 & a \\
1 & a - 1 & a & 0 \\
a & 2 & 1 & -1
\end{array}\right)$$

140 2. Álgebra

Vamos a estudiar el determinante de la matriz de los coeficientes, pues el sistema es 3 x 3.

$$\begin{vmatrix} -1 & 2 & 1 \\ 1 & a-1 & a \\ a & 2 & 1 \end{vmatrix} = -(a-1) + 2a^2 + 2 - a(a-1) - 2 + 2a = -a+1+2a^2 + 2 - a(a-1) - a(a-1)$$

Por tanto:

- Si $a \neq -1 \Longrightarrow RgA = 3 = RgA' = n^{\circ}$ incognitas \Longrightarrow Sistema Compatible Determinado.
- Si a = -1 la matriz asociada es:

$$\left(\begin{array}{ccc|ccc}
-1 & 2 & 1 & -1 \\
1 & -2 & -1 & 0 \\
-1 & 2 & 1 & -1
\end{array}\right)$$

Es obvio que RgA=1 y que RgA'=2 (basta con tomar $\begin{vmatrix} 1 & -1 \\ -1 & 0 \end{vmatrix} = -1 \neq 0$). Luego $RgA=1\neq 2=RgA'\Longrightarrow$ Sistema incompatible.

2.2.24. Discuta, en función del parámetro b, el sistema de ecuaciones

(no es necesario resolverlo en ningún caso).

(Septiembre 11)

- Solución:

La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|c}
0 & 1 & b & 1+b \\
1 & 0 & 1 & 3-b \\
b & -b & 0 & 1-b
\end{array}\right)$$

Vamos a estudiar el determinante de la matriz de los coeficientes, pues el sistema es 3 x 3.

$$\begin{vmatrix} 0 & 1 & b \\ 1 & 0 & 1 \\ b & -b & 0 \end{vmatrix} = b - b^2 = 0 \Longrightarrow \begin{vmatrix} b = 0 \\ b = 1 \end{vmatrix}$$

- Si $b \neq 0, 1 \Longrightarrow RgA = 3 = RgA' = n^{\circ}$ incognitas \Longrightarrow Sistema Compatible Determinado.
- Si b = 0 la matriz asociada es:

$$\left(\begin{array}{ccc|c} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Es obvio que RgA=2, pues $\left| \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right| =-1 \neq 0).$ Veamos el RgA'.

$$\left| \begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 3 \\ 0 & 0 & 1 \end{array} \right| = -1 \neq 0$$

Por tanto $RgA = 2 \neq 3 = RgA' \Longrightarrow$ Sistema incompatible.

• Si b = 1 la matriz asociada es:

$$\left(\begin{array}{ccc|c}
0 & 1 & 1 & 2 \\
1 & 0 & 1 & 2 \\
1 & -1 & 0 & 0
\end{array}\right)$$

Es obvio que RgA=2, pues $\left| \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right| =-1 \neq 0).$ Veamos el RgA'.

$$\left| \begin{array}{ccc} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & -1 & 0 \end{array} \right| = 2 - 2 = 0$$

Por tanto $RgA=2=RgA'\neq 3=n^{\rm o}$ incógnitas \Longrightarrow Sistema compatible indeterminado (Necesita un parámetro).

2.2.25. Discuta, en función del parámetro a, el sistema de ecuaciones

$$\left. \begin{array}{ccccccc}
 x & - & y & + & 2z & = & a \\
 - & x & + & y & - & az & = & 1 \\
 x & + & ay & + & (1+a)z & = & -1
 \end{array} \right\}$$

(no hay que resolverlo en ningún caso).

(Junio 12)

- Solución:

La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|ccc}
1 & -1 & 2 & a \\
-1 & 1 & -a & 1 \\
1 & a & 1+a & -1
\end{array}\right)$$

Vamos a estudiar el determinante de la matriz de los coeficientes, pues el sistema es 3 x 3.

$$\begin{vmatrix} 1 & -1 & 2 \\ -1 & 1 & -a \\ 1 & a & 1+a \end{vmatrix} = 1 + a + a - 2a - 2 - 1 - a + a^2 = a^2 - a - 2 = 0 \Longrightarrow \begin{vmatrix} a = 2 \\ a = -1 \end{vmatrix}$$

Por tanto:

■ Si $a \neq -1, 2 \Longrightarrow RgA = RgA' = 3 = n^{\circ}$ de incógnitas \Longrightarrow Sistema compatible determinado.

 $\frac{142}{}$

2. Álgebra

■ Si a = -1 la matriz resultante es:

$$\left(\begin{array}{ccc|c}
1 & -1 & 2 & -1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & 0 & -1
\end{array}\right)$$

Es obvio que RgA=2, pues $\left|\begin{array}{cc} 1 & 1 \\ -1 & 0 \end{array}\right|=1\neq 0.$

Vamos a estudiar el rango de la matriz ampliada. Para ello basta con estudiar el valor del siguiente determinante.

$$\begin{vmatrix}
 -1 & 2 & -1 \\
 1 & 1 & 1 \\
 -1 & 0 & -1
 \end{vmatrix}$$

Es evidente que este determinante vale 0, pues la primera y la tercera columnas son iguales. Por tanto $RgA=2=RgA'\neq 3=n^{\circ}$ incógnitas \Longrightarrow Sistema compatible indeterminado (Necesita un parámetro).

• Si a=2 la matriz asociada es:

$$\left(\begin{array}{ccc|c}
1 & -1 & 2 & 2 \\
-1 & 1 & -2 & 1 \\
1 & 2 & 3 & -1
\end{array}\right)$$

Obviamente, en este caso, el sistema es incompatible, pues hay una incongruencia con las dos primeras ecuaciones.

2.2.26.

a) Encuentre, razonadamente, un valor del parámetro a para el que sea compatible determinado el sistema de ecuaciones:

$$\left. \begin{array}{rclcrcr}
 ax & + & 2y & + & z & = & a+1 \\
 (a+1)x & - & y & - & az & = & -1 \\
 -x & + & y & + & z & = & 2a
 \end{array} \right\}$$

b) Resuelva el sistema para el valor de a encontrado.

(Junio 13)

- Solución:

La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|c}
a & 2 & 1 & a+1 \\
a+1 & -1 & -a & -1 \\
-1 & 1 & 1 & 2a
\end{array}\right)$$

Vamos a calcular el determinante de la matriz de los coeficientes. El sistema será compatible

2.2. Sistemas de ecuaciones 143

determinado para todos los valores de a que hagan el determinante distinto de cero.

$$\begin{vmatrix} a & 2 & 1 \\ a+1 & -1 & -a \\ -1 & 1 & 1 \end{vmatrix} = -a+2a+a+1-1+a^2-2a(a+1)=a^2-2=0 \Longrightarrow$$

$$\Rightarrow \begin{cases} a=\sqrt{2} \\ a=-\sqrt{2} \end{cases}$$

Luego cualquier valor de a distinto de $\sqrt{2}$ y $-\sqrt{2}$ nos vale. Voy a tomar a=-1 para resolver el apartado b).

Para dicho valor el sistema resultante sería:

$$-x + 2y + z = 0
 - y + z = -1
 -x + y + z = -2$$

Vamos a resolverlo por Cramer. El determinante de la matriz de los coeficientes vale -3 (basta con sustituir -1 en la fórmula que obtuvimos antes). Por tanto las soluciones serían:

$$x = \frac{\begin{vmatrix} 0 & 2 & 1 \\ -1 & -1 & 1 \\ -2 & 1 & 1 \end{vmatrix}}{-3} = \frac{-4 - 1 - 2 + 2}{-3} = \frac{-5}{-3} = \frac{5}{3}$$

$$y = \frac{\begin{vmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ -1 & -2 & 1 \end{vmatrix}}{-3} = \frac{1 - 1 - 2}{-3} = \frac{-2}{-3} = \frac{2}{3}$$

$$z = \frac{\begin{vmatrix} -1 & 2 & 0 \\ 0 & -1 & -1 \\ -1 & 1 & -2 \end{vmatrix}}{-3} = \frac{-2 + 2 - 1}{-3} = \frac{-1}{-3} = \frac{1}{3}$$

2.2.27.

a) Estudie para cuáles valores del parámetro m es compatible determinado el siguiente sistema de ecuaciones:

$$\begin{pmatrix}
 (1-2m)x & - & y & - & z & = & -1 \\
 (m-1)x & + & y & - & z & = & 2 \\
 m^2x & + & y & + & z & = & 3
 \end{pmatrix}$$

b) Resuelva el anterior sistema de ecuaciones para m=0.

(Septiembre 13)

- Solución:

La matriz asociada al sistema es:

$$\left(\begin{array}{ccc|ccc}
1 - 2m & -1 & -1 & -1 \\
m - 1 & 1 & -1 & 2 \\
m^2 & 1 & 1 & 3
\end{array}\right)$$

144 2. Álgebra

Para que el sistema sea compatible determinado tiene que ocurrir que Rg(A) = Rg(A') = no de incógnitas = 3. Para que ocurra esto basta que el determinante de la matriz de los coeficientes sea distinto de cero. Vamos a ver para que valores ocurre esto.

$$|A| = \begin{vmatrix} 1 - 2m & -1 & -1 \\ m - 1 & 1 & -1 \\ m^2 & 1 & 1 \end{vmatrix} = 1 - 2m + m^2 - (m - 1) + m^2 + (m - 1) + 1 - 2m = 2m^2 - 4m + 2$$

Este determinante se anula donde $2m^2 - 4m + 2 = 0$, es decir, cuando m = 1.

Por tanto, si $m \neq 1$ el sistema es compatible determinado.

En el apartado segundo de la pregunta nos piden que lo resolvamos para m=0, valor para el que es compatible determinado. Vamos a resolverlo utilizando la regla de Cramer. La matriz asociada al sistema para este valor es:

$$\left(\begin{array}{ccc|ccc}
1 & -1 & -1 & -1 \\
-1 & 1 & -1 & 2 \\
0 & 1 & 1 & 3
\end{array}\right)$$

El determinate de A vale 2 (Basta con sustituir en la expresión genérica m por 0). Por tanto tenemos que:

$$x = \frac{\begin{vmatrix} -1 & -1 & -1 \\ 2 & 1 & -1 \\ 3 & 1 & 1 \end{vmatrix}}{2} = \frac{-1+3-2+3+2-1}{2} = 2$$

$$y = \frac{\begin{vmatrix} 1 & -1 & -1 \\ -1 & 2 & -1 \\ 0 & 3 & 1 \end{vmatrix}}{2} = \frac{2+3-1+3}{2} = \frac{7}{2}$$

$$y = \frac{\begin{vmatrix} 1 & -1 & -1 \\ -1 & 1 & 2 \\ 0 & 1 & 3 \end{vmatrix}}{2} = \frac{3+1-3-2}{2} = -\frac{1}{2}$$

2.2.28.

a) Estudie cómo es el sistema de ecuaciones:

b) Resuelva el anterior sistema de ecuaciones.

(Junio 14)

- Solución:

Es fácil observar que si sumas las filas primera y tercera da la segunda, lo cual nos hace ver que el sistema es compatible indeterminado.

Vamos a hacerlo estudiando los rangos de la matriz de los coeficientes y de la ampliada.

Tenemos que la matriz de los coeficientes, A, es:

$$A = \left(\begin{array}{rrr} 1 & 1 & -4 \\ 2 & -1 & -1 \\ 1 & -2 & 3 \end{array}\right)$$

Es obvio que el $RgA\geqslant 2$, pues $\left|\begin{array}{cc} 1 & 1 \\ 2 & -1 \end{array}\right|=-3\neq 0$

Además dicho rango es 2, pues tenemos que:

$$\begin{vmatrix} 1 & 1 & -4 \\ 2 & -1 & -1 \\ 1 & -2 & 3 \end{vmatrix} = -3 + 16 - 1 - 4 - 2 - 6 = 0$$

El rango de la ampliada es al menos dos. Veamos que es exactamente dos. Dado que el menor que nos da dicho orden es el utilizado para la matriz de los coeficientes, basta con ver el menor de orden tres formado por esas dos columnas y la de los términos independientes para decidir el rango de la ampliada.

$$\begin{vmatrix} 1 & 1 & 2 \\ 2 & -1 & 1 \\ 1 & -2 & -1 \end{vmatrix} = 1 - 8 + 1 + 2 + 2 + 2 = 0$$

Luego el rango de la ampliada también es 2.

Por tanto, como $RgA = RgA' = 2 < 3 = n^{\circ}$ incog. tenemos que el sistema es compatible indeterminado.

Vamos a resolver el sistema. Dado que el menor de orden 2 que nos ha dado distinto de cero es el formado por las dos primeras filas y las dos primeras columnas, para resolver el sistema eliminamos la última ecuación y transformamos en parámetro la incógnita z. El sistema queda:

$$\left\{
 \begin{array}{rcl}
 x & + & y & = & 2+4t \\
 2x & - & y & = & 1+t
 \end{array}
\right\}$$

Aplicamos reducción para resolver el sistema y tenemos que las soluciones son:

$$x = 1 + \frac{5}{3}t$$
 $y = 1 + \frac{7}{3}t$ $z = t$

2.2.29. Considere el sistema compatible determinado de dos ecuaciones con dos incógnitas $x+y=1 \ x-y=3$ $\equiv \mathcal{S}$, cuya solución es el punto $P_0=(2,-1)$ de \mathbb{R}^2 . Sea \mathcal{S}' el sistema que se obtiene al añadir a \mathcal{S} una tercera ecuación ax+by=c. Conteste razonadamente las siguientes preguntas:

- a) ¿Puede ser S' compatible determinado?
- b) ¿Puede ser S' incompatible?
- c) ¿Puede ser S' compatible indeterminado?

(Julio 14)

- Solución:

Este problema puede verse desde el punto de vista algebráico o bien desde el punto de vista geométrico. Vamos a verlo de los dos modos.

146 2. Álgebra

Para estudiarlo algebráicamente tendríamos que estudiar los rangos de las matrices resultantes. Como el sistema primero que nos dan es compatible determinado tenemos que la matriz de los coeficientes tiene rango 2. Veamos cual es la matriz resultante al añadir esa hipotética ecuación ax + by = c.

$$\left(\begin{array}{cc|c}
1 & 1 & 1 \\
1 & -1 & 3 \\
a & b & c
\end{array}\right)$$

Es obvio que la matriz de los coeficientes, en cualquier caso, tendrá rango 2, pues lo tenía antes de añadir la ecuación y dicha ecuación no añade ninguna columna más. Vamos a estudiar las tres posibilidades que nos plantean.

- a) S' puede ser compatible determinado siempre que el rango de la matriz ampliada siga siendo 2, es decir, la nueva ecuación añadida sea combinación lineal de las dos primeras. Por ejemplo podemos poner la suma de las dos.
- b) S' será incompatible si el rango de la matriz ampliada es tres, es decir, la nueva ecuación añadida no es combinación lineal de las dos primeras. Basta con sumar la parte de las incógnitas y no hacer lo mismo con los términos independientes.
- c) \mathcal{S}' no puede ser compatible indeterminado, pues al añadir una ecuación el conjunto de soluciones del nuevo sistema estará contenido en el del primer sistema, que sólo tenía una.

Desde el punto de vista geométrico tendríamos:

- a) Si, siempre que la nueva recta añadida contenga al punto P_0 .
- b) Si, cuando el punto P_0 no pertenezca a la nueva recta.
- c) No, ya que los puntos que están en \mathcal{S}' tiene que estar contenido en el conjunto de puntos que están en \mathcal{S} y el primer sistema sólo tiene una solución.

Capítulo 3

Geometría

3.1. Vectores, puntos, rectas y planos en el espacio

3.1.1. Hallar la ecuación de una circunferencia que, siendo tangente a la recta $y=\sqrt{3}\,x$, sea tangente al eje de abcisas en el punto (3,0). (Indicación: $tg60^o=\sqrt{3}$, $tg30^o=\frac{\sqrt{3}}{3}$)

(Septiembre 00)

- Solución:

La figura 3.1 nos muestra una visión del problema.

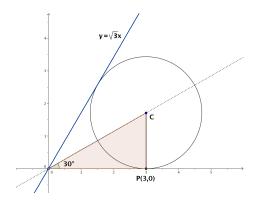


Figura 3.1: Representación detallada del problema

Vamos a utilizar propiedades conocidas de las circunferencias. Se sabe que la recta que pasa por el centro de la circunferencia y por el punto de corte de las dos tangentes (en nuestro caso el origen de coordenadas) es la recta bisectriz del ángulo formado por las tangentes. Como la recta $y = \sqrt{3} x$ forma un ángulo con la horizontal de 60° , se deduce que la recta anteriormente citada forma un ángulo de 30° con la horizontal (ver figura 3.1). También es obvio que el radio es perpendicular con la horizontal en el punto de tangencia (por ser el eje de abcisas una de las tangentes), luego tenemos el triángulo rectangulo que podemos ver en la figura 3.1.

De aquí deducimos:

$$tg\ 30^o = \frac{r}{3} \Longrightarrow r = 3 \cdot tg\ 30^o = 3\frac{\sqrt{3}}{3} = \sqrt{3}$$

Por tanto el centro es $C(3,\sqrt{3})$ y la ecuación buscada es:

$$(x-3)^2 + (y-\sqrt{3})^2 = 3$$

3.1.2. Determinar una recta que sea paralela al plano de ecuación x + y + z = 3, que corte a la recta de ecuaciones x = 0, z = 0, y que también corte a la recta de ecuaciones z = 1, y = 0.

(Septiembre 00)

- Solución:

Vamos a coger un plano paralelo al que nos dan. Luego vamos a cortarlo con las dos rectas indicadas. La recta que pasa por estos dos puntos está contenida en este último plano, por tanto es paralela al plano que nos dan y por supuesto corta a las rectas indicadas.

Como plano paralelo vale el plano x+y+z=1. Si cortamos este plano con las rectas obtenemos:

- Con $x = 0, z = 0 \Longrightarrow A(0, 1, 0)$.
- Con $z = 1, y = 0 \Longrightarrow B(0, 0, 1)$.

La recta buscada pasa por los puntos A y B, por tanto queda definida por A(0,1,0) y por $\overrightarrow{AB} = (0,-1,1)$.

En forma paramétrica, la ecuación resultante es:

$$\begin{aligned}
 x &= 0 \\
 y &= 1 - \lambda \\
 z &= + \lambda
 \end{aligned}$$

3.1.3. Calcular alguna recta que sea paralela al plano de ecuación x - 2y + z = 1 y que también sea paralela al plano que pasa por los puntos de coordenadas (2,0,1),(0,2,1) y (1,-1,0).

(Junio 01)

- Solución:

Bastará con coger planos paralelos a los dos que nos dan y el corte de dichos planos será la recta que buscamos.

Vamos a empezar por calcular la ecuación general del plano que pasa por los tres puntos, que denominaremos: A(2,0,1), B(0,2,1), C(1,-1,0).

Como vectores directores de este plano tomamos \overrightarrow{AB} y \overrightarrow{AC} , cuyas coordenadas serán:

$$\overrightarrow{AB} = (-2, 2, 0) \text{ y } \overrightarrow{AC} = (-1, -1, -1)$$

Por tanto, la ecuación del plano vendrá determinada por $A, \overrightarrow{AB}, \overrightarrow{AC}$.

$$\begin{vmatrix} x-2 & -2 & -1 \\ y & 2 & -1 \\ z-1 & 0 & -1 \end{vmatrix} = -2(x-2) + 2(z-1) + 2(z-1) - 2y =$$
$$= -2x + 4 + 2z - 2 + 2z - 2 - 2y = -2x - 2y + 4z = 0$$

Por tanto podemos tomar como ecuación de dicho plano x+y-2z=0.

Tenemos por tanto dos planos que son:

Para conseguir nuestra recta cogemos dos planos paralelos a ellos, para lo que basta con cambiar el término independiente:

$$\begin{bmatrix} x & - & 2y & + & z & - & 3 & = 0 \\ x & + & y & - & 2z & + & 8 & = 0 \end{bmatrix}$$

Está sería la ecuación de la recta buscada.

3.1.4. Calcular un vector de módulo 1 que sea ortogonal a los vectores de coordenadas (1,0,2) y (2,1,0).

(Junio 01)

- Solución:

Vamos a realizar el producto vectorial de los dos vectores, pues el vector así obtenido será ortogonal a los dos. Después normalizaremos ese vector y obtendremos el vector buscado.

$$\vec{u} \wedge \vec{v} = \left| egin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{array} \right| = 4\vec{j} + \vec{k} - 2\vec{i}$$

Luego un vector ortogonal a ambos sería $\vec{w} = (-2, 4, 1)$.

Vamos a normalizarlo. Su módulo vale $|\vec{w}| = \sqrt{4 + 16 + 1} = \sqrt{21}$.

Dividiendo el vector por su módulo obtenemos el vector \vec{o} buscado:

$$\vec{o} = \frac{\vec{w}}{|\vec{w}|} = \left(\frac{-2}{\sqrt{21}}, \frac{4}{\sqrt{21}}, \frac{1}{\sqrt{21}}\right)$$

3.1.5. Calcular alguna recta que sea paralela al plano de ecuación x + z = 2 y corte perpendicularmente a la recta de ecuaciones x + y = 0, y + z = 2.

(Septiembre 01)

- Solución:

El procedimiento que vamos a seguir lo narro a continuación. Nuestra recta va a ser el corte de dos planos, uno paralelo al primero (con eso garantizamos que la recta es paralela al plano) y el otro va a pertenecer al haz de planos que obtenemos a partir de los planos que definen la segunda recta. De esa forma, como nuestra recta estará contenida en dicho plano cortará a la que nos dan. El plano que eligiremos será aquel que haga que la recta obtenida corte perpendicularmente a la dada en el enunciado.

Dicho esto nos ponemos manos a la obra. Es fácil obtener un plano paralelo al que nos dan, valdría x+z=0. Vamos a por el otro. El haz de planos a que nos referíamos tendría la siguiente forma:

$$\alpha(x+y) + y + z - 2 = 0$$

Luego nuestra recta quedará definida por los planos:

Vamos a buscar cual es el vector director de las rectas (en función de α) para después decidir cual es el perpendicular a la recta dada. Resolviendo el sistema tenemos:

$$\begin{bmatrix} x & + & z & = & 0 \\ \alpha x & + & (\alpha + 1)y & + & z & = & 2 \end{bmatrix} z = \lambda \Longrightarrow x = -\lambda$$

Sustituyendo:

$$\alpha(-\lambda) + (\alpha+1)y + \lambda = 2 \Longrightarrow (\alpha+1)y = 2 - \lambda + \alpha\lambda \Longrightarrow y = \frac{2}{\alpha+1} + \frac{\alpha-1}{\alpha+1}\lambda$$

Luego la ecuación de la recta en forma paramétrica, en función de α , será:

Vamos a encontrar el vector director de la recta que nos dieron.

$$\begin{array}{cccc} x & = & - & \lambda \\ y & = & & \lambda \\ z & = & 2 & - & \lambda \end{array} \right] \Longrightarrow \vec{u} = (-1, 1, -1)$$

Nos falta por encontrar el valor de α que hace que \vec{u} y \vec{v} sean perpendiculares, es decir, que $\vec{u} \cdot \vec{v} = 0$.

$$\vec{u} \cdot \vec{v} = (-1, 1, -1) \cdot \left(-1, \frac{\alpha - 1}{\alpha + 1}, 1\right) = 1 + \frac{\alpha - 1}{\alpha + 1} - 1 = 0 \Longrightarrow \frac{\alpha - 1}{\alpha + 1} = 0 \Longrightarrow \alpha = 1$$

Luego, si sutituimos $\alpha = 1$ en la ecuación (3.1), la recta pedida es:

3.1.6. ¿Qué ángulo deben formar dos vectores no nulos \vec{e} y \vec{v} para que ambos tengan el mismo módulo que su diferencia $\vec{e} - \vec{v}$

(Septiembre 01)

- Solución:

Queremos que:

$$|\vec{e}| = |\vec{v}| = |\vec{e} - \vec{v}|$$
 (3.2)

Sabemos que

$$cos(\widehat{\vec{u},\vec{w}}) = \frac{\vec{u} \cdot \vec{w}}{|\vec{u}| \cdot |\vec{w}|}$$

Si aplicamos esta última fórmula a los vectores $\vec{e} - \vec{v}$ y $\vec{e} - \vec{v}$ tendremos:

$$cos(\overrightarrow{e} - \widehat{\overrightarrow{v}}, \overrightarrow{e} - \overrightarrow{v}) = \frac{(\overrightarrow{e} - \overrightarrow{v}) \cdot (\overrightarrow{e} - \overrightarrow{v})}{|\overrightarrow{e} - \overrightarrow{v}| \cdot |\overrightarrow{e} - \overrightarrow{v}|} = \frac{\overrightarrow{e} \cdot \overrightarrow{e} + \overrightarrow{v} \cdot \overrightarrow{v} - 2\overrightarrow{e} \cdot \overrightarrow{v}}{|\overrightarrow{e} - \overrightarrow{v}| \cdot |\overrightarrow{e} - \overrightarrow{v}|} =$$

$$= \frac{|\overrightarrow{e}|^2 + |\overrightarrow{v}|^2 - 2|\overrightarrow{e}| \cdot |\overrightarrow{v}| \cos(\widehat{\overrightarrow{e}}, \overrightarrow{v})}{|\overrightarrow{e} - \overrightarrow{v}| \cdot |\overrightarrow{e} - \overrightarrow{v}|}$$

Teniendo en cuenta 3.2 y que $cos(\vec{e} - \vec{v}, \vec{e} - \vec{v}) = 1$, resulta:

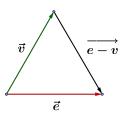
$$1 = \frac{\left|\vec{e}\right|^2 + \left|\vec{e}\right|^2 - 2\left|\vec{e}\right|^2 \cos(\widehat{\vec{e},\vec{v}})}{\left|\vec{e}\right|^2} \Longrightarrow 2\left|\vec{e}\right|^2 - 2\left|\vec{e}\right|^2 \ \cos(\widehat{\vec{e},\vec{v}}) = \left|\vec{e}\right|^2 \Longrightarrow$$

$$\Longrightarrow 2-2\cos(\widehat{\vec{e},\vec{v}})=1\Longrightarrow -2\cos(\widehat{\vec{e},\vec{v}})=-1\Longrightarrow\cos(\widehat{\vec{e},\vec{v}})=\frac{1}{2}$$

Luego el ángulo buscado es:

$$(\widehat{\vec{e},\vec{v}}) = \frac{\pi}{3}$$

Otra forma de verlo es darse cuenta que si \vec{e} , \vec{v} y $\overrightarrow{e-v}$ tienen el mismo módulo, el triángulo que forman es equilátero, como podemos ver en la figura:



De aquí deducimos que el ángulo tiene que ser $\frac{\pi}{3}$.

3.1.7. Hallar dos vectores linealmente independientes que sean ortogonales al vector \vec{e} de coordenadas (1,1,3).

(Junio 02)

- Solución:

Sean \vec{u} y \vec{v} los vectores buscados.

Para que sean linealmente independientes basta con no ser proporcionales y para ser ortogonales tiene que cumplirse

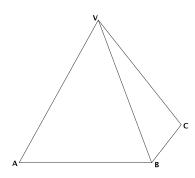
$$\vec{u} \cdot \vec{e} = \vec{v} \cdot \vec{e} = 0$$

Dos vectores válidos para lo que buscamos serían:

$$\vec{u} = (2, 1, -1) \Longrightarrow \vec{u} \cdot \vec{e} = (2, 1, -1) \cdot (1, 1, 3) = 2 + 1 - 3 = 0$$

 $\vec{v} = (1, 2, -1) \Longrightarrow \vec{v} \cdot \vec{e} = (1, 2, -1) \cdot (1, 1, 3) = 1 + 2 - 3 = 0$

3.1.8. La base de una pirámide es un cuadrado ABCD de 2 metros de largo y su vértice V está situado a una altura de 3 metros sobre el centro de la base. Calcular el ángulo que forman los planos ABV y BCV.



- Solución:

Vamos a asignarle coordenadas a los puntos que nos dan. A(2,0,0); B(2,2,0); C(0,2,0) y V(1,1,3). Vamos a calcular los planos.

- Sea $\pi \equiv ABV$. Para calcular la ecuación de este plano vamos a usar el punto A y los vectores \overrightarrow{AB} y \overrightarrow{AV} , es decir A(2,0,0); $\overrightarrow{AB} = (0,2,0)$ y $\overrightarrow{AV} = (-1,1,3)$. Por tanto:

$$\begin{vmatrix} x-2 & 0 & -1 \\ y & 2 & 1 \\ z & 0 & 3 \end{vmatrix} = 6(x-2) + 2z = 6x - 12 + 2z = 0$$

Luego la ecuación del primer plano será $\pi \equiv 3x + z = 6$.

- Sea $\pi' \equiv BCV$. Para calcular éste usaremos B y los vectores \overrightarrow{BC} y \overrightarrow{BV} , es decir, B(2,2,0); $\overrightarrow{BC} = (-2,0,0)$ y $\overrightarrow{BV} = (-1,-1,3)$. Por tanto:

$$\begin{vmatrix} x-2 & -2 & -1 \\ y-2 & 0 & -1 \\ z & 0 & 3 \end{vmatrix} = 2z + 6(y-2) = 2z + 6y - 12 = 0$$

Luego la ecuación del segundo plano es $\pi' \equiv 3y + z = 6$

Vamos a calcular ahora el ángulo que nos piden, es decir el ángulo que forman π y π' . Sus vectores normales son $\vec{n} = (3,0,1)$ y $\vec{n'} = (0,3,1)$. En consecuencia:

$$cos\alpha = \frac{\left|\vec{n} \cdot \vec{n'}\right|}{\left|\vec{n}\right| \cdot \left|\vec{n'}\right|} = \frac{1}{\sqrt{10}\sqrt{10}} = \frac{1}{10} \Longrightarrow \alpha = 84^{\circ}15'39''$$

3.1.9. Determinar si el plano 3x-2y+z=1 es perpendicular a la recta de ecuaciones -x=3y+3z, y+2z=-1. Determinar también si es paralelo a la recta que pasa por los puntos de coordenadas (1,-1,1) y (-1,-1,0).

(Septiembre 02)

- Solución:

Veamos lo primero.

Vamos a calcular el vector director de la recta (\vec{u}) como producto vectorial de los vectores normales de los planos que la determinan.

$$\begin{array}{cccc} x & + & 3y & + & 3z & = 0 \\ & y & + & 2z & = -1 \end{array} \right\} \implies \overrightarrow{n_1} = (1, 3, 3)$$

$$\vec{u} = \overrightarrow{n_1} \wedge \overrightarrow{n_2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 3 & 3 \\ 0 & 1 & 2 \end{vmatrix} = 6\vec{i} + \vec{k} - 2\vec{j} - 3\vec{i} = 3\vec{i} - 2\vec{j} + \vec{k} \Longrightarrow \vec{u} = (3, -2, 1)$$

Como el vector normal al plano era el mismo, deducimos que la recta es perpendicular al plano. Veamos ahora lo segundo. Llamemos P(1, -1, 1) y Q(-1, -1, 0). Por tanto la recta tendrá como vector director $\overrightarrow{PQ} = (-2, 0, -1)$.

Para ver si la recta es paralela al plano vamos a ver si \vec{n} es ortogonal a \overrightarrow{PQ}

$$\vec{n} \cdot \overrightarrow{PQ} = (3, -2, 1).(-2, 0, -1) = -6 - 1 = -7 \neq 0$$

Luego no son paralelos.

3.1.10. Sabiendo que los lados de un rectángulo ABCD miden 1 y 3 metros, calcular el producto escalar de los vectores \overrightarrow{CB} y \overrightarrow{AD} , y el módulo del producto vectorial de los vectores \overrightarrow{CB} y \overrightarrow{BA} .

(Septiembre 03)

- Solución:

Vamos a asignarles coordenadas a los puntos:

$$D(0,0,0), A(3,0,0), B(3,1,0), C(0,1,0).$$

Vamos a ver paso a paso cada una de las dos cosas que nos piden calcular:

 Para hallar el producto escalar pedido vamos a calcular primero los vectores y a continuación haremos el producto.

$$\overrightarrow{\overrightarrow{CB}} = (3,0,0) \\ \overrightarrow{AD} = (-3,0,0)$$
 $\Longrightarrow \overrightarrow{CB} \cdot \overrightarrow{AD} = (3,0,0) \cdot (-3,0,0) = -9$

También podíamos haber aplicado la definición de producto escalar, ya que el ángulo que forman los vectores es $180^{\rm o}$ y sus módulos son tres en ambos casos. Por tanto:

$$\overrightarrow{CB} \cdot \overrightarrow{AD} = \left| \overrightarrow{CB} \right| \cdot \left| \overrightarrow{AD} \right| \cdot \cos \left(\widehat{\overrightarrow{CB}}, \widehat{\overrightarrow{AD}} \right) = 3 \cdot 3 \cdot (-1) = -9$$

- Para calcular el producto vectorial es necesario calcular el vector \overrightarrow{BA} , pues el vector \overrightarrow{CB} ya lo calculamos antes.

$$\overrightarrow{BA} = (0, -1, 0)$$

Ahora realizaremos el producto vectorial y posteriormente calcularemos el módulo.

$$\overrightarrow{CB} \wedge \overrightarrow{BA} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & 0 & 0 \\ 0 & -1 & 0 \end{vmatrix} = -3\vec{k}$$

Por tanto $\left|\overrightarrow{CB} \wedge \overrightarrow{BA}\right| = 3$.

Aquí también podemos utilizar que el módulo del producto vectorial es el área del paralelogramos que forman los vectores, que es obvio que vale 3.

3.1.11. Determinar un plano que, pasando por el origen de coordenadas, sea paralelo a la recta de ecuaciones x + y = 1, y + z = 2, y también sea paralelo a la recta que pasa por los puntos de coordenadas (1,1,0) y (0,1,1).

(Septiembre 03)

- Solución:

Para calcular el plano usaremos un punto y dos vectores. Como punto usaremos el origen y como vectores los vectores directores de las dos rectas. Vamos a calcular estos últimos:

- Empezamos por la primera recta, multiplicando los vectores normales asociados a los planos que la definen.

Luego el primer vector buscado es $\vec{u} = (1, -1, 1)$.

- En la segunda recta un vector válido es:

$$\vec{v} = (0, 1, 1) - (1, 1, 0) = (-1, 0, 1)$$

Por tanto la ecuación del plano es:

$$0 = \begin{vmatrix} x & y & z \\ 1 & -1 & 1 \\ -1 & 0 & 1 \end{vmatrix} = -x - y - z - y = -x - 2y - z$$

es decir, valdría

$$x + 2y + z = 0$$

3.1.12. ¿Qué relación hay entre los coeficientes de las ecuaciones

$$ax + by + cz = d$$
, $a'x + b'y + c'z = d'$

de dos planos paralelos? Razonar la respuesta.

(Junio 04)

- Solución:

La relación que deben guardar es:

$$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'} \neq \frac{d}{d'}$$

Ello se debe a:

- 1. La doble igualdad implica que los vectores normales son proporcionales y por tanto paralelos.
- 2. La desigualdad hace que no hablemos del mismo plano.
- 3.1.13. Determinar una recta que sea paralela al plano que pasa por los puntos de coordenadas (1,1,0); (1,0,1) y (0,1,1), que también sea paralela al plano x+2y+3z=0, y que no esté contenida en ninguno de estos dos planos.

- Solución:

Para eso vamos a considerar sendos planos paralelos a los que nos dan y la recta en que se cortan es paralela a ambos planos y no está en ninguno.

Empezemos por calcular la ecuación del plano que pasa por los tres puntos. Dichos puntos son A(1,1,0); B(1,0,1) y C(0,1,1). Para hallar la ecuación del plano vamos a considerar el punto A y los vectores \overrightarrow{AB} y \overrightarrow{AC}

Los vectores son $\overrightarrow{AB} = (0, -1, 1)$ y $\overrightarrow{AC} = (-1, 0, 1)$. Por tanto la ecuación del plano es:

$$\pi \equiv \left| \begin{array}{ccc} x - 1 & 0 & -1 \\ y - 1 & -1 & 0 \\ z & 1 & 1 \end{array} \right| = -(x - 1) - (y - 1) - z = -x + 1 - y + 1 - z = 0 \Longrightarrow$$

$$\implies x + y + z - 2 = 0$$

Tenemos, en consecuencia, dos planos y voy a coger dos planos paralelos a ellos para construir la recta:

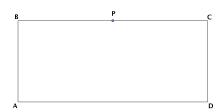
Plano
$$1^{\circ} \longrightarrow x + y + z - 2 = 0 \longrightarrow x + y + z + 3 = 0$$
 (Paralelo)

Plano
$$2^{\circ} \longrightarrow x + 2y + 3z = 0 \longrightarrow x + 2y + 3z - 1 = 0$$
 (Paralelo)

Por tanto, una recta posible es:

$$\begin{cases} x + y + z + 3 = 0 \\ x + 2y + 3z - 1 = 0 \end{cases}$$

3.1.14. Si los lados de un rectángulo ABCD miden 1 cm y 4 cm, calcular el coseno del ángulo PAC, donde P es el punto medio del lado BC:



(Junio 05)

- Solución:

El ángulo al que nos referimos viene representado en la figura $3.2\,$

Para resolverlo vamos a asignarle coordenadas a los puntos:

$$A(0,0,0); B(0,0,1); C(0,4,1); D(0,4,0); P(0,2,1).$$

El ángulo que buscamos sería el formado por los vectores $\overrightarrow{AP}=(0,2,1)$ y $\overrightarrow{AC}=(0,4,1)$. Por tanto tendríamos:

$$cos\alpha = \frac{\overrightarrow{AP} \cdot \overrightarrow{AC}}{\left| \overrightarrow{AP} \right| \cdot \left| \overrightarrow{AC} \right|} = \frac{(0,2,1) \cdot (0,4,1)}{\sqrt{0^2 + 2^2 + 1^2} \cdot \sqrt{0^2 + 4^2 + 1^2}} = \frac{0 + 8 + 1}{\sqrt{4 + 1} \cdot \sqrt{16 + 1}} = \frac{9}{\sqrt{85}}$$

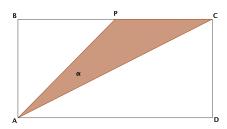


Figura 3.2: Visión del ángulo

En consecuencia:

$$\alpha = \arccos \frac{9}{\sqrt{85}} = 12^{\circ}31'44''$$

- 3.1.15. Si A, B y C son los puntos de coordenadas (1,0,0); (0,1,0) y (0,0,1) respectivamente
 - a) Calcular el área del triángulo que forman los puntos A, B y C.
 - b) Determinar el ángulo que forman los vectores \overrightarrow{AB} y \overrightarrow{AC} .

(Septiembre 05)

- Solución:

Es facil observar que el triángulo que forman los puntos es un triángulo rectángulo. Nosotros vamos a resolverlo como si no nos hubieramos dado cuenta, aunque donde es más aplicable es en el apartado b), pues el ángulo sale directamente.

a) Empezaremos por calcular el área del triángulo. Dicho área se calcula con la fórmula:

$$A_T = \frac{1}{2} \left| \overrightarrow{AB} \wedge \overrightarrow{AC} \right|$$

Vamos a calcular los vectores y a realizar el producto vectorial:

$$\overrightarrow{AB} = (-1, 1, 0) \text{ y } \overrightarrow{AC} = (-1, 0, 1).$$

Por tanto:

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix} = \overrightarrow{i} + \overrightarrow{k} + \overrightarrow{j} \Longrightarrow \overrightarrow{AB} \wedge \overrightarrow{AC} = (1, 1, 1)$$

En consecuencia, el área buscada es:

$$A_T = \frac{|(1,1,1)|}{2} = \frac{\sqrt{3}}{2} u^2$$

b) Vamos a calcular ahora el ángulo que nos piden. para ello usamos la fórmula conveniente que es:

$$cos(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\left|\overrightarrow{AB} \cdot \overrightarrow{AC}\right|}{\left|\overrightarrow{AB}\right| \cdot \left|\overrightarrow{AC}\right|} = \frac{|1 + 0 + 0|}{\sqrt{2} \cdot \sqrt{2}} = \frac{1}{2}$$

Por tanto:

$$\alpha = \arccos\frac{1}{2} = 60^{\circ}$$

3.1.16. Hallar un vector de módulo 1 que sea ortogonal a los vectores de coordenadas (0,1,1) y (2,1,0).

(Septiembre 05)

- Solución:

Una forma posible es calcular el producto vectorial de los vectores y obtendremos un vector ortogonal a ambos, después lo normalizamos y terminamos.

Vamos a llamar $\vec{u} = (0, 1, 1)$ y $\vec{v} = (2, 1, 0)$.

$$\vec{w} = \vec{u} \wedge \vec{v} = \left| egin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ 0 & 1 & 1 \\ 2 & 1 & 0 \end{array} \right| = 2\vec{j} - 2\vec{k} - \vec{i} \Longrightarrow \vec{w} = (-1, 2, -2)$$

El vector que buscamos lo obtenemos dividiendo \vec{w} entre su módulo.

$$\frac{\vec{w}}{|\vec{w}|} = \frac{(-1, 2, -2)}{\sqrt{1+4+4}} = \left(\frac{-1}{3}, \frac{2}{3}, \frac{-2}{3}\right)$$

3.1.17. Determina la relación que debe existir entre a y b para que los puntos de coordenadas (1,0,0),(a,b,0),(a,0,b) y (0,a,b) estén en un plano.

(Junio 06)

- Solución:

Para que ocurra lo que nos piden los vectores $\overrightarrow{AB}, \overrightarrow{AC}$ y \overrightarrow{AD} tiene que ser linealmente dependientes. Veamos cuales son esos vectores e impongamos que el determinante que los tiene como filas valga 0.

$$\overrightarrow{AB} = (a-1, b, 0); \overrightarrow{AC} = (a-1, 0, b) \text{ y } \overrightarrow{AD} = (-1, a, b)$$

Su determinate es

$$\begin{vmatrix} a-1 & b & 0 \\ a-1 & 0 & b \\ -1 & a & b \end{vmatrix} = -b^2 - b^2(a-1) - ab(a-1) = 0 \Longrightarrow b^2 - ab^2 + b^2 - a^2b + ab = 0 \Longrightarrow$$

$$\implies ab(-b-a+1)=0 \Longrightarrow \left[\begin{array}{l} a=0 \\ b=0 \\ -b-a+1=0 \Longrightarrow b=-a+1 \end{array} \right.$$

3.1.18. Determina el plano que pasa por el punto de coordenadas (1,2,3) y por la recta de ecuaciones x + y = 1, y + z = 1.

(Junio 06)

- Solución:

Vamos a llamar A al punto que nos dan. Vamos a pasar a paramétricas la ecuación de la recta y así tendremos un punto (que llamaremos B) y el vector director (\vec{u}) de la misma. Para encontrar la ecuación del plano usaremos $A, \overrightarrow{AB}, \vec{u}$.

Hacemos $y = \lambda$ y nos resulta:

De aquí deducimos que el plano queda determinado por:

$$A(1,2,3)$$

$$\overrightarrow{AB} = (0,-2,-2)$$

$$\overrightarrow{u} = (-1,1,-1)$$

Por tanto la ecuación del plano es:

$$\begin{vmatrix} x-1 & 0 & -1 \\ y-2 & -2 & 1 \\ z-3 & -2 & -1 \end{vmatrix} = 2(x-1) + 2(y-2) - 2(z-3) + 2(x-1) = 2x - 2 + 2y - 4 - 2z + 6 + 2x - 2 = 4x + 2y - 2z - 2 = 0$$

Una ecuación más simple sería

$$2x + y - z - 1 = 0$$

3.1.19. Determina el plano que pase por los puntos de coordenadas (1,0,0) y (0,1,0), y sea paralelo a la recta

$$\begin{array}{cccc}
x & +y & +z & = 2 \\
x & -y & +z & = 2
\end{array}$$

(Septiembre 06)

- Solución:

Supongamos que nuestros puntos son A(1,0,0) y B(0,1,0).

El plano que buscamos va a quedar definido por uno de los puntos (por ejemplo A), por el vector \overrightarrow{AB} y por el vector director de la recta (\overrightarrow{u}) .

Vamos a calcular primero los vectores \overrightarrow{AB} y \overrightarrow{u} .

- $\overrightarrow{AB} = (-1, 1, 0).$
- El vector \vec{u} lo obtenemos al hacer el producto vectorial de los vectores normales a los planos que definen la recta.

$$\begin{array}{ccc} x & +y & +z & =2 \\ x & -y & +z & =2 \end{array} \right] \Longrightarrow \begin{array}{c} \overrightarrow{n_1} = (1,1,1) \\ \overrightarrow{n_2} = (1,-1,1) \end{array} \right] \Longrightarrow \overrightarrow{u} = \overrightarrow{n_1} \wedge \overrightarrow{n_2}$$

Por tanto,

$$\vec{u} = \overrightarrow{n_1} \wedge \overrightarrow{n_2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = \vec{i} + \vec{j} - \vec{k} - \vec{k} - \vec{j} + \vec{i} = 2\vec{i} - 2\vec{k} \Longrightarrow \vec{u} = (2, 0, -2)$$

Por tanto la ecuación del plano es:

$$\begin{vmatrix} x-1 & -1 & 2 \\ y & 1 & 0 \\ z & 0 & -2 \end{vmatrix} = -2(x-1) - 2z - 2y = -2x + 2 - 2z - 2y = 0$$

En consecuencia el plano buscado tiene ecuación

$$x + y + z - 1 = 0$$

3.1.20. Determina la relación que debe existir entre a y b para que el punto P=(0,a,b) esté en el plano determinado por los puntos A=(1,0,0), B=(1,1,1) y C=(0,2,1).

(Junio 07)

- Solución:

Vamos a empezar por calcular la ecuación del plano. Para ello usamos como punto A(1,0,0) y como vectores $\overrightarrow{AB}(0,1,1)$ y $\overrightarrow{AC}=(-1,2,1)$.

La ecuación será:

$$0 = \begin{vmatrix} x-1 & y & z \\ 0 & 1 & 1 \\ -1 & 2 & 1 \end{vmatrix} = (x-1) - y + z - 2(x-1) = x - 1 - y + z - 2x + 2 = -x - y + z + 1$$

Por tanto, una ecuación válida para el plano será $\pi \equiv x+y-z-1=0$

Vamos a imponer que $P \in \pi$, resultando la relación buscada

$$a - b - 1 = 0$$

3.1.21. Escribe un vector de módulo 1 que sea ortogonal al vector de coordenadas (1,2,1).

(Junio 07)

- Solución:

Llamemos a nuestro vector $\vec{u}(1,2,1)$. Para obtener un vector \vec{v} ortogonal a él tiene que ocurrir que $\vec{u} \cdot \vec{v} = 0$. Podemos tomar el vector $\vec{v}(1,1,-3)$, el cual es evidente que es ortogonal a \vec{u} .

Además nos piden que sea de módulo uno, luego vamos a normalizarlo.

$$|\vec{v}| = \sqrt{1 + 1 + 9} = \sqrt{11}$$

Por tanto, el vector buscado es:

$$\vec{w}\left(\frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}}, \frac{-3}{\sqrt{11}}\right)$$

3.1.22. Sean \vec{u} y \vec{v} dos vectores ortogonales de módulo 4 y 3 respectivamente. Calcula el módulo de los vectores $\vec{u} + \vec{v}$ y $\vec{u} - \vec{v}$, indicando los resultados teóricos en que te basas para ello.

(Junio 08)

- Solución:

Tenemos que \vec{v} y \vec{v} son ortogonales y que $|\vec{u}| = 4$ y que $|\vec{v}| = 3$

- Vamos a calcular el módulo de $\vec{u} + \vec{v}$.

$$|\vec{u} + \vec{v}| \stackrel{(1)}{=} \sqrt{(\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v})} \stackrel{(2)}{=} \sqrt{|\vec{u}|^2 + |\vec{v}|^2 + 2\vec{u} \cdot \vec{v}} \stackrel{(3)}{=} \sqrt{|\vec{u}|^2 + |\vec{v}|^2} = \sqrt{16 + 9} = 5$$

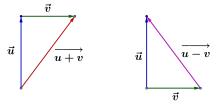
- Vamos a calcular el módulo de $\vec{u} - \vec{v}$.

$$|\vec{u} - \vec{v}| \stackrel{(1)}{=} \sqrt{(\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})} \stackrel{(2)}{=} \sqrt{|\vec{u}|^2 + |\vec{v}|^2 - 2\vec{u} \cdot \vec{v}} \stackrel{(3)}{=} \sqrt{|\vec{u}|^2 + |\vec{v}|^2} = \sqrt{16 + 9} = 5$$

Vamos a comentar los conceptos teóricos utilizados.

- (1) Nos basamos en la definición de módulo de un vector en función del producto escalar.
- (2) Usamos la propiedad que dice: " $\vec{u} \cdot \vec{u} = |\vec{u}|^2$ ".
- (3) Hemos utilizado la propiedad del producto escalar que dice: "El producto escalar de dos vectores ortogonales es cero".

También podemos darnos cuenta, como vemos en la gráfica, que son triángulos rectángulos y por tanto basta con aplicar el teorema de Pitágoras.



3.1.23. Sean \vec{a} y \vec{b} dos vectores no proporcionales del espacio real tridimensional. ¿Qué relación existe entre las direccciones de \vec{a} y \vec{b} y la dirección de su producto vectorial? ¿Cuánto vale el módulo del producto vectorial de \vec{a} y \vec{b} ?

(Junio 08)

- Solución:

A la primera pregunta contestamos, por definición de producto vectorial, que la dirección del mismo es perpendicular a la de los dos vectores.

La segunda pregunta tiene también fácil respuesta.

$$\left| \vec{a} \wedge \vec{b} \right| = |\vec{a}| \cdot \left| \vec{b} \right| \cdot sen\left(\widehat{\vec{a}, \vec{b}} \right)$$

3.1.24.

- a) Determina la recta que pasa por el punto (1,1,1) y es perpendicular al plano x+y=1.
- b) Calcula el punto donde la recta obtenida corta al plano dado x + y = 1.

(Septiembre 08)

- Solución:

Contestaremos primero al apartado a.

Como la recta es perpendicular al plano valdrá como vector director de la misma el vector normal al plano.

$$\pi: x + y = 1 \Longrightarrow \vec{n}(1,1,0)$$

Por tanto la ecuación paramétrica de la recta es:

$$\left. \begin{array}{l} x = 1 + \lambda \\ y = 1 + \lambda \\ z = 1 \end{array} \right\}$$

Su ecuación en forma continua será:

$$\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{0}$$

De donde deducimos que su ecuación general será:

$$\left. \begin{array}{rcl} x-1 & = & y-1 \\ z & = & 1 \end{array} \right\} \Longrightarrow \left. \begin{array}{rcl} x-y & =0 \\ z & =1 \end{array} \right\}$$

Veamos ahora el apartado b.

Para ello usaremos la ecuación paramétrica de la recta y sustituiremos en la ecuación del plano.

$$1 + \lambda + 1 + \lambda = 1 \Longrightarrow 2\lambda = -1 \Longrightarrow \lambda = -\frac{1}{2}$$

Por tanto, el punto buscado es:

$$x = 1 - \frac{1}{2}$$

$$y = 1 - \frac{1}{2}$$

$$z = 1$$

$$\Rightarrow Q\left(\frac{1}{2}, \frac{1}{2}, 1\right)$$

3.1.25.

a) Determina el plano que pasa por el punto de coordenadas (1,1,1) y corta perpendicularmente a la recta

$$\frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{1}$$

b) Calcula el punto donde se cortan la recta y el plano.

(Septiembre 08)

- Solución:

Calculemos primero el plano que nos piden en el apartado a.

Como dicho plano corta perpendicularmente a la recta, el vector director de la misma valdrá como vector normal del plano. Por tanto, dicho vector normal es $\vec{n}(2,1,1)$.

En consecuencia, la ecuación del plano es:

$$2x + y + z + D = 0$$

Como el plano pasa por el punto de coordenadas (1, 1, 1), sustituyendo estas coordenadas en la ecuación anterior podemos calcular el valor de D.

$$2+1+1+D=0 \Longrightarrow D=-4$$

La ecuación del plano buscada es 2x + y + z - 4 = 0.

Vamos a resolver el segundo apartado.

La ecuación paramétrica de la recta es:

$$r \equiv \begin{bmatrix} x = 1 + 2\lambda \\ y = \lambda \\ z = -1 + \lambda \end{bmatrix}$$

Sustituyendo en la ecuación del plano obtenemos el valor de λ , y de ahí el punto buscado.

$$2(1+2\lambda) + \lambda - 1 + \lambda - 4 = 0 \Longrightarrow 2 + 4\lambda + \lambda - 1 + \lambda - 4 = 0 \Longrightarrow 6\lambda = 3 \Longrightarrow \lambda = \frac{1}{2}$$

Sustituyendo el valor obtenido en la ecuación paramétrica de la recta obtenemos las coordenadas de dicho punto:

3.1.26. Dadas las rectas

$$r: \left\{ \begin{array}{lcll} x+y+z=0 \\ x-y+z=1 \end{array} \right. , \quad r': \left\{ \begin{array}{lcll} x & + & y & + & z & = 0 \\ ax & + & + & bz & = 0 \end{array} \right.$$

determine la relación que debe existir entre a y b para que:

- a) r y r' sean paralelas.
- b) r y r' sean perpendiculares.

(Junio 09)

- Solución:

Vamos a empezar calculando unos vectores directores de las rectas y después contestaremos a los interrogantes que nos plantean.

Cada recta viene definida como corte de dos planos, por tanto el producto vectorial de los vectores normales de dichos planos valdrá como vector director de cada recta.

Emperemos por r:

Los vectores directores de los planos que definen a r son $\overrightarrow{n_1}=(1,1,1)$ y $\overrightarrow{n_2}=(1,-1,1)$.

Por tanto:

$$ec{d}=\overrightarrow{n_1}\wedge\overrightarrow{n_2}=\left|egin{array}{ccc} ec{i} & ec{j} & ec{k} \ 1 & 1 & 1 \ 1 & -1 & 1 \end{array}
ight|=ec{i}+ec{j}-ec{k}-ec{k}-ec{j}+ec{i}=2ec{i}-2ec{k}\Rightarrow ec{d}=(2,0,-2)$$

Hacemos lo mismo con r' y tenemos que los vectores normales en este caso son $\overrightarrow{n_1'}=(1,1,1)$ y $\overrightarrow{n_2'}=(a,0,b)$.

Luego,

$$\overrightarrow{d'} = \overrightarrow{n'_1} \wedge \overrightarrow{n'_2} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 1 \\ a & 0 & b \end{vmatrix} = b\overrightarrow{i} + a\overrightarrow{j} - a\overrightarrow{k} - b\overrightarrow{j} = b\overrightarrow{i} + (a - b)\overrightarrow{j} - a\overrightarrow{k} \Rightarrow \overrightarrow{d'} = (b, a - b, -a)$$

Una vez calculados los vectores pasamos a contestar las cuestiones que nos plantean.

a) Para que sean paralelas tiene que ocurrir que \vec{d} tenga la misma dirección que $\vec{d'}$, es decir, sus coordenadas tienen que ser proporcionales. Por tanto

$$\frac{2}{b} = \frac{0}{a-b} = \frac{-2}{-a} \Rightarrow -2a = -2b \Rightarrow a = b$$

b) Para que sean perpendiculares el producto escalar de los vectores directores de las rectas tiene que valer 0. Luego

$$\vec{d} \cdot \vec{d'} = 0 \Rightarrow (2, 0, -2) \cdot (b, a - b, -a) = 2b + 2a = 0 \Rightarrow 2b = -2a \Rightarrow b = -a$$

3.1.27.

a) Calcule el punto de corte del plano $\Pi: x + y = 0$ y la recta

$$r: \left\{ \begin{array}{ll} x = & \lambda \\ y = & -2 \\ z = & 1 & + \lambda \end{array} \right.$$

b) Determine la recta s que está contenida en el plano Π y corta perpendicularmente a r.

(Junio 09)

- Solución:

Vamos a responder a los dos apartados.

a) Un punto cualquiera de r tiene la siguiente forma $(\lambda, -2, 1 + \lambda)$. Vamos a sustituir este punto en la ecuación del plano y calcularemos de esa forma λ y el punto en cuestión.

$$\lambda - 2 = 0 \Rightarrow \lambda = 2$$

En consecuencia el punto buscado es P(2, -2, 3).

b) La recta s vendrá definida por el punto P calculado anteriormente (ya que corta a r y está contenida en Π) y como vector director el producto vectorial de los vectores directores de r y el normal al plano Π (por la misma razón anterior).

El vector nomal de Π es $\vec{n} = (1, 1, 0)$ y el director de r es $\vec{d} = (1, 0, 1)$.

Luego el vector director de s será:

$$ec{u} = ec{d} \wedge ec{n} = \left| egin{array}{ccc} ec{i} & ec{j} & ec{k} \ 1 & 0 & 1 \ 1 & 1 & 0 \end{array}
ight| = ec{j} + ec{k} - ec{i} \Rightarrow ec{u} = (-1, 1, 1)$$

Por tanto la ecuación de la recta s es:

$$s: \begin{cases} x = 2 - \lambda \\ y = -2 + \lambda \\ z = 3 + \lambda \end{cases}$$

3.1.28. Considere las rectas
$$r: \begin{cases} x = \lambda \\ y = -\lambda \\ z = 1 \end{cases}$$
 y $s: \begin{cases} x+y=0 \\ x-z=1 \end{cases}$

- a) Compruebe que r y s son coplanarias.
- b) Obtenga las ecuaciones de la recta que corta a r y a s, y es perpendicular a ambas.

(Septiembre 09)

- Solución:

a) Para comprobar eso vamos a coger los vectores directores de las dos rectas y el vector que va de un punto cualquiera de r a uno de s. Si los vectores resultantes son dependientes, las rectas serán coplanarias.

En la recta r es muy fácil de calcular:

$$r: \left\{ \begin{array}{ll} x = & \lambda \\ y = & -\lambda \\ z = & 1 \end{array} \right. \Rightarrow \left\{ \begin{array}{ll} P(0,0,1) \\ \vec{u} = (1,-1,0) \end{array} \right.$$

Vayamos a con la recta s. Vamos a pasarla a paramétricas haciendo $x = \alpha$.

$$s: \left\{ \begin{array}{ccccc} x & + & y & & = 0 & x = & & \alpha \\ x & & - & z & = 1 & \Rightarrow & y = & - & \alpha \\ x & & & z = & -1 & + & \alpha \end{array} \right\} \Rightarrow \left\{ \begin{array}{cccc} Q(0,0,-1) & & & \\ \vec{v} = (1,-1,1) & & \\ \vec{v} = ($$

El vector tercero que ibamos a calcular era el vector que va de P a Q. Dicho vector es $\overrightarrow{PQ} = (0,0,-2)$.

Para comprobar que los tres vectores son coplanarios vamos a calcular el determinante que los tiene como filas.

$$det \left[\vec{u}, \vec{v}, \overrightarrow{PQ} \right] = \begin{vmatrix} 1 & -1 & 0 \\ 1 & -1 & 1 \\ 0 & 0 & -2 \end{vmatrix} = 2 - 2 = 0$$

Luego los vectores son dependientes y en consecuencia las rectas son coplanarias.

- b) Dicha recta puede venir definida por:
 - \bullet Punto: Punto de corte de r y s.
 - Vector: $\vec{u} \wedge \vec{v}$.

Vamos a calcular el punto de corte de las dos rectas. Un punto genérico de r tendrá la forma $R(\lambda, \lambda, 1)$.

Si sustituimos en s obtenemos:

$$\begin{bmatrix} \lambda & - & \lambda & = 0 \\ \lambda & - & 1 & = 1 \end{bmatrix} \Rightarrow \lambda = 2$$

Por tanto el punto buscado es R(2, -2, 1).

El vector es:

$$\vec{d} = \vec{u} \wedge \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 0 \\ 1 & -1 & 1 \end{vmatrix} = -\vec{i} - \vec{k} + \vec{k} - \vec{j} \Rightarrow \vec{d} = (-1, -1, 0)$$

Luego la recta buscada es:

$$r_1: \left\{ \begin{array}{lll} x = & 2 & - & \lambda \\ y = & -2 & - & \lambda \\ z = & 1 \end{array} \right.$$

3.1.29. De todos los planos que pasan por los puntos P = (0,0,-1) y Q = (1,0,0), calcule uno que sea paralelo a la recta de ecuaciones x + y = 1, x - z = 0

(Junio 10 - Fase general)

- Solución:

Sea Π el plano buscado y r la recta. Es obvio que P no está en la recta. Voy a utilizar para calcular el plano dicho punto P, el vector \overrightarrow{PQ} y el vector director de la recta.

Como P no está en la recta, y usamos el vector director de la misma para calcular el plano, eso hace que la recta sea paralela al plano.

Tenemos que $\overrightarrow{PQ} = (1,0,1)$. Vamos a pasar la ecuación de la recta a paramétricas para hallar un vector director de la misma.

$$z = \lambda$$
; $x + y = 1$
 $x - z = 0$ \Rightarrow $y = 1 - \lambda$
 $x = \lambda$

La ecuación paramétrica será:

$$\left. \begin{array}{cccc}
 x = & \lambda \\
 y = & 1 & - & \lambda \\
 z = & \lambda
 \end{array} \right\}$$

De aquí deducimos que un vector director de la recta puede ser $\vec{u} = (1, -1, 1)$.

Por tanto, la ecuación paramétrica del plano es:

3.1.30. Dados los puntos A=(1,1,1), B=(1,0,0) y C=(0,2,1), sea r la recta que pasa por A y B, y sea Π el plano que pasa por C y es perpendicular a r. Calcule el punto P_0 en el que se cortan r y Π .

(Junio 10 - Fase específica)

- Solución:

Vamos a encontrar la ecuación paramétrica de la recta. Tenemos que $\overrightarrow{AB}=(0,-1,-1)$ y usando el punto B obtenemos:

$$\begin{cases}
 x = 1 \\
 y = -\lambda \\
 z = -\lambda
 \end{cases}$$

166

La ecuación general del plano la obtenemos usando como vector normal \overrightarrow{AB} , luego,

$$-y - z + D = 0$$

imponiendo que pase por C encontramos el valor de D.

$$-2-1+D=0 \Longrightarrow D=3$$

En consecuencia la ecuación del plano es -y-z+3=0.

Vamos a calcular el punto de corte usando la ecuación general del plano y un punto genérico de la recta $P(1, -\lambda, -\lambda)$.

$$\lambda + \lambda + 3 = 0 \Longrightarrow \lambda = \frac{2}{3}$$

Por tanto el punto buscado es $P\left(1, -\frac{2}{3}, -\frac{2}{3}\right)$.

- 3.1.31. Sea θ el ángulo formado por los vectores $\vec{u} = (\lambda, 1, 0)$ y $\vec{v} = (1, \mu, 0)$, donde λ y μ son número reales.
 - a) Obtenga la relación que deben cumplir λ y μ para que se cumpla que $cos\theta = 0$.
 - b) Obtenga la relación que deben cumplir λ y μ para que se cumpla que $sen\theta=0$.

(Septiembre 10 - Fase general)

- Solución:
 - a) Sabemos que

$$cos(\widehat{\vec{u}, \vec{v}}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$$

Por tanto tenemos que

$$cos\theta = 0 \Longrightarrow \vec{u} \cdot \vec{v} = 0 \Longrightarrow \lambda + \mu = 0 \Longrightarrow \mu = -\lambda$$

b) Si $sen\theta = 0 \Longrightarrow$ los vectores \vec{u} y \vec{v} son proporcionales. Luego

$$\frac{\lambda}{1} = \frac{1}{\mu} \Longrightarrow \mu = \frac{1}{\lambda}$$

3.1.32. Considere las rectas $r: \left\{ \begin{array}{ll} x=1 \\ y=z \end{array} \right.$ **y** $s: \left\{ \begin{array}{ll} y=0 \\ x=z \end{array} \right.$

Obtenga un punto P de r y un punto Q de s tales que el vector \overrightarrow{PQ} tenga módulo igual a 1 y sea ortogonal al vector (-1,0,1)

(Septiembre 10 - Fase específica)

- Solución:

Las ecuaciones paramétricas de las rectas son:

$$r: \left\{ \begin{array}{llll} x & = & 1 \\ y & = & \lambda \\ z & = & \lambda \end{array} \right. & \text{y} & s: \left\{ \begin{array}{lll} x & = & \mu \\ y & = & 0 \\ z & = & \mu \end{array} \right.$$

Luego los puntos genéricos de las rectas son $P(1, \lambda, \lambda)$ y $Q(\mu, 0, \mu)$. Por tanto $\overrightarrow{PQ} = (\mu - 1, -\lambda, \mu - \lambda)$.

Vamos a imponer las dos condiciones y obtendremos el sistema que nos permitirá calcular λ y μ .

$$\left|\overrightarrow{PQ}\right| = 1 \Longrightarrow \sqrt{(\mu - 1)^2 + \lambda^2 + (\mu - \lambda)^2} = 1 \Longrightarrow (\mu - 1)^2 + \lambda^2 + (\mu - \lambda)^2 = 1$$

$$\overrightarrow{PQ} \perp (-1, 0, -1) \Longrightarrow (\mu - 1, -\lambda, \mu - \lambda) \cdot (-1, 0, 1) = 0 \Longrightarrow -\mu + 1 + \mu - \lambda = 0$$

De la segunda condición obtenemos que $\lambda = 1$ y sustituyendo en la primera tenemos:

$$(\mu - 1)^2 + 1 + (\mu - 1)^2 = 1 \implies \mu^2 - 2\mu + 1 + 1 + \mu^2 - 2\mu + 1 = 1 \Longrightarrow$$

$$\Longrightarrow 2\mu^2 - 4\mu + 2 = 0 \Longrightarrow \mu^2 - 2\mu + 1 = 0 \Longrightarrow$$

$$\Longrightarrow \mu = 1$$

Luego los puntos buscados son P(1,1,1) y Q(1,0,1).

3.1.33.

- a) Determine el plano Π que pasa por el punto (1,0,1) y es perpendicular a la recta de ecuaciones $x+y+z=0,\ x-z=1$.
- b) Calcule el punto en el que se cortan r y Π .

(Septiembre 10 - Fase específica)

- Solución:

a) Usaremos como vector normal del plano el vector director de la recta. Vamos a calcular la ecuación paramétrica de la recta.

Luego el plano buscado viene determinado por P(1,0,1) y $\vec{n}=(1,-2,1)$.

Por tanto

$$x - 2y + z + D = 0$$

Imponiendo que P pertenezca al plano calculamos D.

$$1 + 1 + D = 0 \Longrightarrow D = -2$$

En consecuencia el plano buscado es

$$x - 2y + z - 2 = 0$$

b) Un punto genérico de la recta es $Q(1 + \lambda, -1 - 2\lambda, \lambda)$. Vamos a sustituirlo en la ecuación del plano para calcular λ .

$$1 + \lambda + 2 + 4\lambda + \lambda - 2 = 0 \Longrightarrow 6\lambda + 1 = 0 \Longrightarrow \lambda = -\frac{1}{6}$$

Luego el punto buscado es $Q\left(\frac{5}{6}, -\frac{2}{3}, -\frac{1}{6}\right)$.

168

3.1.34.

- a) Estudie, en función de los parámetros a y b, la posición relativa de la recta $r: \left\{ \begin{array}{ll} x=0 \\ y=0 \end{array} \right.$ y el plano $\Pi \equiv x+y+az=b$.
- b) Para cada una de las posiciones obtenidas, diga cómo es el sistema formado por las tres ecuaciones

$$x = 0, \qquad y = 0, \qquad x + y + az = b$$

(Junio 11)

- Solución:

En el primer apartado, la recta que nos dan es el propio eje Z, luego puedo usar como punto de la recta O(0,0,0) y como vector director $\vec{k} = (0,0,1)$. Por otro lado tenemos que un vector normal al plano es $\vec{n} = (1,1,a)$ y un punto del mismo es P(b,0,0) (basta con sustituir y = z = 0).

Hagamos el producto escalar de los dos vectores y tenemos:

$$\vec{k} \cdot \vec{n} = a$$

De aquí deducimos que si $a \neq 0$ la recta r corta al plano Π en un punto.

Si a=0 la recta es paralela o está contenida en el plano.

Para que la recta esté contenida en el plano es basta con que el O esté en el plano. Eso sólo es posible si b=0.

En resumen:

- Si $a \neq 0 \Longrightarrow r$ corta a Π .
- \bullet Si a=0 y $b=0 \Longrightarrow r$ está contenida en el plano.
- Si a = 0 y $b \neq 0 \Longrightarrow r$ es paralela al plano.

Otra forma de hacerlo sería haber estudiado el sistema formado por la recta y el plano:

Veámoslo y contestaremos de paso al segundo apartado. La matriz asociada es:

$$\left(\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & a & b
\end{array}\right)$$

Es evidente que el rango de la matriz de los coeficientes es al menos 2, pues $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \neq 0$. Vamos a calcular el determinante de la matriz de los coeficientes para ver los casos resultantes.

$$\left| \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & a \end{array} \right| = a$$

En consecuencia tenemos que si $a \neq 0$ el sistema es compatible determinado, y por tanto la recta y el plano se cortan en un punto.

Si a=0 vamos a estudiar el rango de la matriz ampliada. Es obvio que dicho rango es mayor o igual que 2. Estudiemos el menor de orden 3.

$$\left| \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & b \end{array} \right| = b$$

Por tanto:

- Si a = 0 y $b = 0 \Longrightarrow RgA = RgA' = 2 \Longrightarrow$ Sistema compatible indeterminado $(r \subset \Pi)$.
- Si a = 0 y $b \neq 0 \Longrightarrow RgA = 2 \neq 3 = RgA' \Longrightarrow$ Sistema incompatible $(r \parallel \Pi)$.
- **3.1.35.** Considere las rectas $r: \left\{ \begin{array}{ll} x+y=0 \\ x-z=1 \end{array} \right.$ y $s: \left\{ \begin{array}{ll} x=1 \\ y=\lambda \\ z=\lambda \end{array} \right.$
 - a) Determine el plano Π que contiene a la recta r y corta perpendicularmente a la recta s.
 - b) Calcule el punto donde se cortan el plano Π y la recta s.

(Junio 11)

- Solución:

Vamos a pasar la recta r a paramétricas. Hacemos $x = \mu$ y tenemos:

$$r: \left\{ \begin{array}{lll} x = & \mu \\ y = & -\mu \\ z = & -1 & +\mu \end{array} \right.$$

Es evidente que $r \perp s$, pues lo son sus vectores directores. Veamos el primer apartado.

Como $\Pi \perp s$ el propio vector director de la recta nos vale como vector normal al plano. Además como $r \perp s$ tenemos que, o bien Π contiene a r, o bien $r \parallel \Pi$.

Luego, para que la recta esté contenida en el plano, basta con imponer que un punto de la recta esté en el plano (podemos tomar A(0,0,-1) que pertenece a r).

$$\left. \begin{array}{l} \Pi: y+z=b \\ A(0,0,-1) \in \Pi \end{array} \right] \Longrightarrow b=-1 \Longrightarrow \Pi: y+z=-1$$

El segundo apartado nos pide que encontremos el punto de corte de s y Π . El punto que buscamos, por pertenecer a s, tiene la siguiente forma $P(1, \lambda, \lambda)$. Sustituyendo en Π tenemos.

$$\lambda + \lambda = -1 \Longrightarrow \lambda = \frac{-1}{2} \Longrightarrow P\left(1, \frac{-1}{2}, \frac{-1}{2}\right)$$

3.1.36. Calcule todos los vectores de módulo 2 que son ortogonales a los vectores $\vec{u} = (1, -1, -1)$ y $\vec{v} = (-1, 2, 1)$.

(Junio 12)

170

- Solución:

Para obtener un vector ortogonal a dos vectores a la vez lo mejor es hacer su producto vectorial. Hecho esto, todos los vectores ortogonales a los dos son proporcionales al producto vectorial.

Vamos a calcular el producto vectorial:

$$\vec{u} \wedge \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & -1 \\ -1 & 2 & 1 \end{vmatrix} = -\vec{i} + \vec{j} + 2\vec{k} - \vec{k} - \vec{j} + 2\vec{i} = \vec{i} + \vec{k} \Longrightarrow \vec{u} \wedge \vec{v} = (1, 0, 1)$$

Todos los vectores proporcionales a $\vec{u} \wedge \vec{v}$ serán de la forma $\vec{w_a} = (a, 0, a), a \neq 0$.

Veamos cuales tienen módulo 2.

$$|\vec{w}_a| = \sqrt{a^2 + a^2} = \sqrt{2a^2}$$

Igualando a 2 tenemos:

$$\sqrt{2a^2} = 2 \Longrightarrow 2a^2 = 4 \Longrightarrow a^2 = 2 \Longrightarrow a = \pm\sqrt{2}$$

Por tanto los vectores buscados son:

$$\vec{w}_{\sqrt{2}} = (\sqrt{2}, 0, \sqrt{2})$$

$$\vec{w}_{-\sqrt{2}} = (-\sqrt{2}, 0, -\sqrt{2})$$

- 3.1.37. Sea Π el plano determinado por los puntos $A=(1,0,0),\ B=(0,1,0)$ y $P=(0,0,c),\ \mathbf{y}$ sea la recta $r:\begin{cases} x-y=3\\ 2x-z=3 \end{cases}$
 - a) Obtenga la ecuación implícita de Π .
 - b) Determine los valores de c para los que r y Π son paralelos.
 - c) Determine los valores de c para los que r y Π son perpendiculares.

(Septiembre 12)

- Solución:

Vamos a usar el punto \overrightarrow{A} y los vectores \overrightarrow{AB} y \overrightarrow{AP} para obtener la ecuación del plano que nos piden. Los vectores son $\overrightarrow{AB} = (-1, 1, 0)$ y $\overrightarrow{AP} = (-1, 0, c)$.

Por tanto la ecuación resultante será:

$$\begin{vmatrix} x-1 & y & z \\ -1 & 1 & 0 \\ -1 & 0 & c \end{vmatrix} = c(x-1) + z + cy = 0 \Longrightarrow \mathbf{c}\mathbf{x} + \mathbf{c}\mathbf{y} + \mathbf{z} - \mathbf{c} = \mathbf{0}$$

Para los dos próximos apartados vamos a pasar la recta r a paramétricas para saber cual es su vector director.

$$x = \lambda$$

$$-y = 3 - \lambda \implies y = -3 + \lambda$$

$$-z = 3 - 2\lambda \implies z = -3 + 2\lambda$$

Luego el vertor director de r es $\vec{u} = (1, 1, 2)$. A su vez sabemos que el vector normal del plano es $\vec{n} = (c, c, 1)$.

En el apartado b) tendríamos:

$$r \parallel \Pi \Longrightarrow \vec{u} \perp \vec{n} \Longrightarrow \vec{u} \cdot \vec{n} = 0 \Longrightarrow c + c + 2 = 0 \Longrightarrow c = -1$$

En el apartado c) tendríamos:

$$r \perp \Pi \Longrightarrow \vec{u} \parallel \vec{n} \Longrightarrow \frac{1}{c} = \frac{1}{c} = \frac{2}{1} \Longrightarrow 2c = 1 \Longrightarrow c = \frac{1}{2}$$

- **3.1.38.** Sean en \mathbb{R}^3 los vectores $\vec{e} = (2,0,0), \ \vec{u} = (1,0,-1) \ \mathbf{y} \ \vec{v} = (-2,3,-2).$
 - a) Calcule el producto vectorial $\vec{e} \times \vec{u}$.
 - b) Calcule el seno del ángulo θ que forman \vec{e} y \vec{u} .
 - c) Calcule el ángulo ϕ que forman \vec{u} y \vec{v} .

(Junio 13)

- Solución:
 - a) Vamos a realizar el producto vectorial.

$$\vec{e} \times \vec{u} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 0 & 0 \\ 1 & 0 & -1 \end{vmatrix} = 2\vec{j} \Longrightarrow \vec{e} \times \vec{u} = (0, 2, 0)$$

b) Para calcular este ángulo que nos piden vamos a usar la fórmula del módulo del producto vectorial.

$$|\vec{e} \times \vec{u}| = |\vec{e}| \cdot |\vec{u}| \cdot sen \theta$$

Para realizar las operaciones me falta el valor del módulo del vector \vec{u} . Vamos a calcularlo.

$$|\vec{u}| = \sqrt{1+0+1} = \sqrt{2}$$

Por tanto:

$$\operatorname{sen} \theta = \frac{|\vec{e} \times \vec{u}|}{|\vec{e}| \cdot |\vec{u}|} = \frac{2}{2 \cdot \sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

c) Para hallar el ángulo que nos piden ahora vamos a usar la fórmula del producto escalar.

$$\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos \phi$$

Para poder aplicarla necesitamos saber cuanto vale el módulo del vector \vec{v} .

$$|\vec{v}| = \sqrt{4 + 9 + 4} = \sqrt{17}$$

Luego:

$$\cos\phi = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} = \frac{-2+2}{\sqrt{2} \cdot \sqrt{17}} = 0$$

Por tanto $\phi = 90^{\circ}$.

3.1.39.

a) Calcule las ecuaciones implícitas de la recta r que pasa por el punto P=(1,-1,0) y es paralela a los planos $\Pi_1 \equiv x+y=2$ y $\Pi_2 \equiv x-y+z=1$.

b) Calcule también las ecuaciones paramétricas de r y un vector director de r.

(Junio 13)

- Solución:

a) Como la recta es paralela a los dos planos, su ecuación ecuación implícita será de la forma:

$$x + y = d$$
$$x - y + z = d'$$

ya que estos planos son paralelos a los que nos dan. Vamos a imponer que pasen por el punto P y de esa forma calcularemos d y d'.

$$1-1=d \implies d=0$$

 $1+1=d' \implies d'=2$

Luego las ecuaciones buscadas son:

b) Para resolver este apartado basta con resolver el sistema planteado por las dos ecuaciones. Vamos a hacer $y=\lambda$.

$$\begin{split} y &= \lambda \\ x + y &= 0 \Longrightarrow x = -\lambda \\ x - y + z &= 2 \Longrightarrow z = 2 + \lambda + \lambda = 2 + 2\lambda \end{split}$$

Luego las ecuaciones paramétricas buscadas son:

$$r \equiv \begin{cases} x = -\lambda \\ y = \lambda \\ z = 2 + 2\lambda \end{cases}$$

Un vector director sería $\vec{u} = (-1, 1, 2)$.

3.1.40. Considere en \mathbb{R}^3 las rectas $r: \left\{ \begin{array}{l} x=0 \\ z=0 \end{array} \right.$, $s: \left\{ \begin{array}{l} x+y=1 \\ x-y=1 \end{array} \right.$

- a) Obtenga un vector director de la recta s.
- b) Obtenga el plano Π que contiene a r y es paralelo a s.
- c) Obtenga el plano $\overline{\Pi}$ que contiene a r y es perpendicular a s.

(Junio 14)

- Solución:

a) Para encontrar el vector director de la recta s basta con que pasemos a paramétricas la ecuación de la recta.

Hacemos z = t y por reducción llegamos a que la ecuación paramétrica de la recta es:

$$s \equiv \begin{cases} x = 1 \\ y = 0 \\ z = t \end{cases}$$

De aquí deducimos que un vector director de s es $\vec{v} = (0,0,1)$. Otra forma de obtener este vector es multiplicar vectorialmente los vectores normales de los planos que determinan la ecuación general de la recta.

b) La recta r es el eje Y, por lo que un punto y un vector de dicha recta pueden ser O(0,0,0) y $\vec{u} = (0,1,0)$.

El plano que nos piden vendrá determinado por dicho punto O y los vectores \vec{u} y \vec{v} . Por tanto la ecuación será:

$$0 = \left| \begin{array}{ccc} x & y & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right| = x$$

Luego el plano buscado será $\Pi \equiv x = 0$

c) Si es perpendicular a s tenemos que el vector normal del plano buscado es el vector director de s, es decir, \vec{v} . Además, al pasar por r, podemos utilizar como punto el punto O=(0,0,0). Por tanto, el plano buscado será $\overline{\Pi}\equiv z=0$

3.1.41.

- a) Dado el plano Π_1 de ecuación z=0, escriba las ecuaciones de dos planos Π_2 y Π_3 tales que los planos Π_1 , Π_2 y Π_3 se corten dos a dos pero no exista ningún punto común a los tres.
- b) Clasifique el sistema formado por las ecuaciones de los tres planos Π_1 , Π_2 y Π_3 .

(Junio 14)

- Solución:

Comencemos por el primer apartado, aunque vamos a contestar al segundo con el planteamiento que hacemos para resolver el primero.

Vamos a plantear el problema algebraicamente, aunque sea un problema geométrico. Si nos dicen que los planos se cortan dos a dos, pero que no tienen ningún punto en común, estamos hablando de que el sistema formado por los tres planos es incompatible. Con esto respondemos al segundo apartado.

Para que se cumpla lo que nos piden en la primera condición, basta con encontrar ecuaciones de planos que no sean proporcionales dos a dos (eso conlleva que se cortan dos a dos).

Hay muchas maneras de hacer esto, pero una válida sería elegir dos planos no proporcionales, sumarlos y cambiar el término independiente que nos sale al sumar, por ejemplo

$$\begin{cases}
 2x + 3y + z = 2 \\
 x - 2y + 3z = 1 \\
 3x + y + 4z = 7
 \end{cases}$$

- **3.1.42.** En \mathbb{R}^3 , considere los cuatro puntos A = (0, 1, 1), B = (-2, 0, -1), C = (-1, 1, 0) y D = (-2, 2, 1), y sea r la recta que pasa por C y por D.
 - a) Obtenga ecuaciones paramétricas de r.

b) Halle los puntos P de la recta r para los que el triángulo APB sea rectángulo en su vértice P.

(Julio 14)

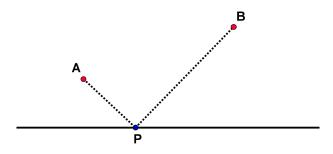
- Solución:

Para calcular la ecuación paramétrica que nos piden necesitamos un punto y un vector que determinen la recta. Como punto puede servir cualquiera de los dos, tomaremos por ejemplo C. Como vector director de la recta tomaremos el vector \overrightarrow{CD} . Por tanto nuestra recta viene determinada por C = (-1, 1, 0) y $\overrightarrow{CD} = (-1, 1, 1)$.

Dicha ecuación será:

$$\left. \begin{array}{lll} x = & -1 & -\lambda \\ y = & 1 & +\lambda \\ z = & & \lambda \end{array} \right\}$$

Vamos a buscar el punto P que cumple la condición que nos piden en el segundo apartado. Podemos ver en el siguiente gráfico que pretendemos.



El punto P, por estar en la recta, tiene una expresión, en función de λ , como la que sigue $P(-1-\lambda,1+\lambda,\lambda)$.

Se tratará de calcular el valor de λ que hace que $\overrightarrow{PA} \cdot \overrightarrow{PB} = 0$.

Tenemos que:

$$\overrightarrow{PA} = (1 + \lambda, -\lambda, 1 - \lambda) \qquad \overrightarrow{PB} = (-1 + \lambda, -1 - \lambda, -1 - \lambda)$$

Por tanto:

$$0 = \overrightarrow{PA} \cdot \overrightarrow{PB} = \lambda^2 - 1 + \lambda + \lambda^2 - 1 + \lambda^2 = 3\lambda^2 + \lambda - 2$$

Resolvemos esta ecuación de segundo grado y tenemos dos valores para λ que son:

$$\lambda_1 = -1 \qquad \qquad \lambda_2 = \frac{2}{3}$$

Para cada valor de λ obtenemos un punto que cumple lo que queremos. Dichos puntos son:

$$\lambda_1 = -1 \Longrightarrow P_1 = (0, 0, -1)$$
 $\lambda_2 = \frac{2}{3} \Longrightarrow P_2 = \left(-\frac{5}{3}, \frac{5}{3}, \frac{2}{3}\right)$

3.2. Problemas métricos

3.2.1. Calcular la distancia del punto de coordenadas (1,1,2) al plano que pasa por los puntos de coordenadas (1,1,0); (1,0,1) y (0,1,1).

(Junio 00)

- Solución:

Vamos a asignarles un nombre a los puntos A(1,1,2); B(1,1,0); C(1,0,1) y D(0,1,1).

Vamos a calcular la ecuación del plano que pasa por B, C y D. Para ello vamos a usar B, \overrightarrow{BC} y \overrightarrow{BD} . Empecemos por calcular los vectores, que tendrían por coordenadas $\overrightarrow{BC}(0, -1, 1)$ y $\overrightarrow{BD}(-1, 0, 1)$.

Por tanto la ecuación del plano:

$$\begin{vmatrix} x-1 & y-1 & z \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{vmatrix} = -(x-1) - (y-1) - z = -x + 1 - y + 1 - z = -x - y - z + 2$$

Por tanto vale como ecuación $\pi \equiv x + y + z - 2 = 0$.

Vamos a calcular la distancia.

$$d(A,\pi) = \frac{|1+1+2-2|}{\sqrt{1+1+1}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} u$$

3.2.2. Calcular la distancia del punto de coordenadas (3,5,0) a la recta que pasa por los puntos de coordenadas (0,1,2) y (0,1,1).

(Junio 00)

- Solución:

A los puntos vamos a designarlos por A(3,5,0), B(0,1,2) y C(0,1,1). La recta que pasa por B y C queda definida por B(0,1,2) y $\overrightarrow{BC} = (0,0,-1)$. La distancia la calculamos por la fórmula conocida.

$$d(A,r) = \frac{\left|\overrightarrow{AB} \wedge \overrightarrow{BC}\right|}{\left|\overrightarrow{BC}\right|}$$

donde $\overrightarrow{AB}=(-3,-4,2).$ El producto vectorial del numerador queda:

$$\overrightarrow{AB} \wedge \overrightarrow{BC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -3 & -4 & 2 \\ 0 & 0 & -1 \end{vmatrix} = 4\vec{i} - 3\vec{j} \Longrightarrow \overrightarrow{AB} \wedge \overrightarrow{BC} = (4, -3, 0)$$

Luego:

$$d(A,r) = \frac{\sqrt{16+9}}{\sqrt{1}} = 5 \text{ u.}$$

3.2.3. Definir el producto escalar de vectores y enunciar su relación con los conceptos de ángulo y distancia entre dos puntos.

(Junio 01)

- Solución:

Al ser una pregunta teórica puedes encontrar la solución en cualquier libro.

176

3.2.4. Calcular el área del cuadrilátero cuyos vértices son los puntos de coordenadas (1,0,1),(2,0,2),(3,1,3) y (1,2,1).

(Septiembre 02)

- Solución:

Para que formen un cuadrilátero tienen que ser coplanarios. Vamos a empezar por comprobar esto. Para eso vamos a asignarles nombre a los puntos A(1,0,1); B(2,0,2); C(3,1,3) y D(1,2,1). Vamos a considerar los vectores $\overrightarrow{AB} = (1,0,1); \overrightarrow{AC} = (2,1,2) y \overrightarrow{AD} = (0,2,0)$.

$$\left| \begin{array}{ccc} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 0 & 2 & 0 \end{array} \right| = 4 - 4 = 0$$

En consecuencia los vectores son linealmente dependientes y por tanto los puntos son coplanarios. La figura 3.3 nos muestra el cuadrilátero.

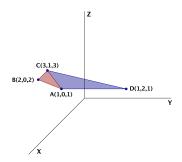


Figura 3.3: Representación gráfica del cuadrilátero.

Para calcular el área vamos a dividir el cuadrilátero, como observamos en la figura 3.3, en dos triángulos que serían ABC y ACD, después calcularemos el área de cada uno y por último sumaremos las dos para obtener el área que nos solicitan.

- Área de
$$ABC$$

$$A_{ABC} = \frac{1}{2} \left| \overrightarrow{AB} \wedge \overrightarrow{AC} \right|$$

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 1 \\ 2 & 1 & 2 \end{vmatrix} = \cancel{Z}\vec{j} + \vec{k} - \cancel{Z}\vec{j} - \vec{i} \Longrightarrow \overrightarrow{AB} \wedge \overrightarrow{AC} = (-1, 0, 1)$$

Luego:

$$A_{ABC} = \frac{1}{2} |(-1, 0, 1)| = \frac{1}{2} \sqrt{2} = \frac{\sqrt{2}}{2} u^2$$

- Área de ACD

$$A_{ACD} = \frac{1}{2} \left| \overrightarrow{AC} \wedge \overrightarrow{AD} \right|$$

$$\overrightarrow{AC} \wedge \overrightarrow{AD} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 1 & 2 \\ 0 & 2 & 0 \end{vmatrix} = 4\vec{k} - 4\vec{i} \Longrightarrow \overrightarrow{AC} \wedge \overrightarrow{AD} = (-4, 0, 4)$$

Luego:

$$A_{ACD} = \frac{1}{2} |(-4, 0, 4)| = \frac{1}{2} \sqrt{32} = 2\sqrt{2} u^2$$

Luego el área que nos pedían es:

$$A = A_{ABD} + A_{ACD} = \frac{\sqrt{2}}{2} + 2\sqrt{2} = \frac{5\sqrt{2}}{2} u^2$$

3.2.5. Determinar una constante a para que el plano de ecuación ax + y + z = 2 forme un ángulo de $\pi/3$ radianes con el plano z = 0.

(Junio 03)

- Solución:

Sabemos que la fórmula para hallar el ángulo es:

$$cos\alpha = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|}$$

Los vectores normales de cada plano son:

$$ax + y + z = 2 \implies \overrightarrow{n_1} = (a, 1, 1)$$

 $z = 0 \implies \overrightarrow{n_2} = (0, 0, 1)$

Luego tenemos que

$$cos\alpha = \frac{|(a,1,1) \cdot (0,0,1)|}{|(a,1,1)| \cdot |(0,0,1)|} = \frac{1}{\sqrt{a^2 + 2} \cdot 1}$$

Como $\alpha = \pi/3$, sustituyendo resulta:

$$\frac{1}{\sqrt{a^2 + 2}} = \cos\frac{\pi}{3} = \frac{1}{2}$$

Luego

$$\sqrt{a^2+2}=2 \Longrightarrow a^2+2=4 \Longrightarrow a^2=2 \Longrightarrow a=\pm\sqrt{2}$$

3.2.6. Calcular la ecuación del plano que pasa por los puntos de coordenadas (1,0,0); (0,1,1); (1,2,0). Determinar la distancia del punto (2,1,1) a dicho plano.

(Junio 04)

- Solución:

Vamos a calcular la ecuación del plano que pasa por los tres puntos. Para ello vamos a considerar los tres puntos con los siguientes nombres: A(1,0,0); B(0,1,1); C(1,2,0). Dicho esto, vamos a calcular la ecuación del plano que pasa por el punto A y tiene como vectores directores \overrightarrow{AB} y \overrightarrow{AC} .

Por tanto tenemos A(1,0,0), $\overrightarrow{AB} = (-1,1,1)$ y $\overrightarrow{AC} = (0,2,0)$.

$$\pi = \begin{vmatrix} x - 1 & -1 & 0 \\ y & 1 & 2 \\ z & 1 & 0 \end{vmatrix} = -2z - 2(x - 1) = -2x - 2z + 2 = 0 \Rightarrow x + z - 1 = 0$$

Una vez hallada la ecuación del plano vamos a calcular la distancia del punto P(2,1,1) a dicho plano.

$$d(P,\pi) = \frac{|2+1-1|}{\sqrt{1^2+1^2}} = \frac{2}{\sqrt{2}} = \frac{2\sqrt{2}}{2} = \sqrt{2} \text{ u.}$$

3.2.7. Determinar las coordenadas de un punto que diste 2 unidades de la recta

$$\frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$$

(Junio 05)

- Solución:

Basta con tomar un vector perpendicular al vector director de la recta (\vec{u}) y un punto A de la misma. Le sumamos a dicho punto un vector de módulo 2 y que tenga la dirección y sentido del vector perpendicular calculado. De entrada tenemos que el punto A puede ser A(1,0,1) y que el vector director puede ser $\vec{u} = (1,1,-1)$. Un vector perpendicular a \vec{u} puede ser $\vec{v} = (0,1,1)$, pues tenemos que:

$$\vec{u} \perp \vec{v}$$
, pues $(0,1,1).(1,1,-1)=0$

Falta por encontrar un vector de la dirección de \vec{v} pero de módulo 2. Por ejemplo podemos tomar $\vec{w} = (0, \sqrt{2}, \sqrt{2})$.

Con estos datos, el punto buscado es:

$$P = A + \vec{w} = (1, 0, 1) + (0, \sqrt{2}, \sqrt{2}) = (1, \sqrt{2}, 1 + \sqrt{2})$$

3.2.8. Calcula el ángulo que forma el plano x + y + z = 0 con la recta de ecuaciones x + y = 1, y + z = 1.

(Septiembre 06)

- Solución:

Para hallar el ángulo vamos a utilizar la fórmula:

$$cos(90^o - \alpha) = \frac{|\vec{u} \cdot \vec{n}|}{|\vec{u}| \cdot |\vec{n}|}$$

donde \vec{u} es el vector director de la recta y \vec{n} el vector normal al plano. Vamos a calcularlos.

- Empezemos por el plano x + y + z = 0, cuyo vector normal es $\vec{n} = (1, 1, 1)$.
- El vector director de la recta vamos a obtenerlo haciendo el producto vectorial de los vectores normales $(\overrightarrow{n_1} \ y \ \overrightarrow{n_2})$ de los planos que determinan la recta. Dichos vectores normales son:

$$x + y = 1 \Longrightarrow \overrightarrow{n_1} = (1, 1, 0)$$

$$y+z=1 \Longrightarrow \overrightarrow{n_2}=(0,1,1)$$

Por tanto el vector director será:

$$\vec{u} = \overrightarrow{n_1} \wedge \overrightarrow{n_2} = \left| egin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right| = \vec{i} + \vec{k} - \vec{j} \Longrightarrow \vec{u} = (1, -1, 1)$$

Por tanto el coseno del ángulo buscado es:

$$cos(90^{\circ} - \alpha) = \frac{|(1, 1, 1) \cdot (1, -1, 1)|}{\sqrt{1 + 1 + 1} \cdot \sqrt{1 + 1 + 1}} = \frac{|1 - 1 + 1|}{\sqrt{3} \cdot \sqrt{3}} = \frac{1}{3}$$

En consecuencia:

$$90^{\circ} - \alpha = \arccos\frac{1}{3} \Longrightarrow 90^{\circ} - \alpha = 70^{\circ}31'42'' \Longrightarrow \alpha = 90^{\circ} - 70^{\circ}31'42'' = 19^{\circ}28'18''$$

3.2.9. Calcula el área del triángulo cuyos vértices son los puntos de corte del plano x+y+z=1 con los ejes coordenados.

(Septiembre 07)

- Solución:

Vamos a calcular las coordenadas de los vértices del triángulo.

- Eje X
$$\Longrightarrow$$
 $(y = 0; z = 0) \Longrightarrow x = 1 \longrightarrow A(1, 0, 0)$

- Eje Y
$$\Longrightarrow$$
 $(x = 0; z = 0) \Longrightarrow y = 1 \longrightarrow B(0, 1, 0)$

- Eje Z
$$\Longrightarrow$$
 $(x = 0; y = 0) \Longrightarrow z = 1 \longrightarrow C(0, 0, 1)$

Conocidos los vértices vamos a calcular el área que nos piden. Sabemos que:

$$A_T = \frac{1}{2} \left| \overrightarrow{AB} \wedge \overrightarrow{AC} \right|$$

Las coordenadas de los vectores son $\overrightarrow{AB} = (-1, 1, 0)$; $\overrightarrow{AC} = (-1, 0, 1)$.

El producto vectorial de ambos es:

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \left| egin{array}{ccc} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{array} \right| = \overrightarrow{i} + \overrightarrow{k} + \overrightarrow{j}$$

Por tanto:

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = (1, 1, 1)$$

El área buscada será:

$$A_T = \frac{1}{2} \left| \overrightarrow{AB} \wedge \overrightarrow{AC} \right| = \frac{1}{2} \sqrt{1 + 1 + 1} = \frac{\sqrt{3}}{2} \ u^2$$

3.2.10.

a) Determina la posición relativa de plano x - y + z = 2 y la recta de ecuaciones

$$\frac{x}{2} = \frac{y+1}{1} = \frac{z+2}{-1}$$

b) Calcula la distancia entre la recta y el plano anteriores.

(Septiembre 07)

- Solución:
 - a) Vamos a tomar el vector normal y un punto del plano.

$$x - y + z = 2 \Longrightarrow \vec{n} = (1, -1, 1) \text{ y } A = (0, 0, 2)$$

Ahora veremos el vector director y un punto de la recta:

$$\frac{x}{2} = \frac{y+1}{1} = \frac{z+2}{-1} \Longrightarrow \vec{u} = (2, 1, -1) \text{ y } B = (0, -1, -2)$$

Tenemos que $\vec{u} \cdot \vec{n} = 2 - 1 - 1 = 0 \Longrightarrow$ La recta es paralela al plano o está contenida en él.

Si $B \in \pi$ entonces la recta estaría contenida en el plano, pero:

$$0 + 1 - 2 \neq 2$$

Luego la recta es paralela al plano.

b) Vamos a calcular la distancia de la recta al plano.

$$d(r,\pi) = d(B,\pi) = \frac{|0+1-2-2|}{\sqrt{1+1+1}} = \frac{3}{\sqrt{3}} = \sqrt{3} \ u$$

3.2.11.

- a) Compruebe que la recta $r: \left\{ egin{array}{ll} x=&1&+&\lambda\\ y=&&\lambda& {
 m es\ perpendicular\ al\ plano}\ \Pi: x+y+z=1.\\ z=&&\lambda \end{array} \right.$
- b) Calcule los dos puntos de la recta r cuya distancia al plano Π es igual a $\sqrt{3}$ unidades.

(Septiembre 09)

- Solución:

Vamos a responder en primer lugar al primer apartado. Para comprobar lo que nos piden tenemos que probar que el vector director de la recta tiene la misma dirección que el vector normal del plano, es decir, son proporcionales.

El vector director de r es $\vec{d} = (1, 1, 1)$ y el vector normal del plano Π es $\vec{n} = (1, 1, 1)$, luego r es perpendicular a Π .

Para resolver el segundo apartado vamos a coger un punto genérico de la recta r, que tienen la forma $P(1 + \lambda, \lambda, \lambda)$.

Vamos a calcular la distancia de estos puntos al plano Π e imponer que dicha distancia valga $\sqrt{3}$.

$$d(P,\Pi) = \frac{|1+\lambda+\lambda+\lambda-1|}{\sqrt{3}} = \sqrt{3} \Rightarrow |3\lambda| = 3$$

Por tanto tenemos que:

$$|3\lambda| = 3 \Rightarrow \begin{cases} 3\lambda = 3 \Rightarrow \lambda = 1 \Rightarrow P_1(2, 1, 1) \\ 3\lambda = -3 \Rightarrow \lambda = -1 \Rightarrow P_2(0, -1, -1) \end{cases}$$

3.2.12. Calcula el ángulo que forma el plano $\sqrt{3}x - z = 3$ con la recta de ecuaciones x + y = 1, y - x = -1 (Los ángulos se miden en radianes)

(Junio 10 - Fase general)

- Solución:

La fórmula para calcular el ángulo pedido sería:

$$sen\alpha = \frac{|\vec{v} \cdot \vec{n}|}{|\vec{v}| \cdot |\vec{n}|}$$

El vector normal al plano es $\vec{n} = (\sqrt{3}, 0, -1)$.

Para hallar el vector director de la recta vamos a pasar la ecuación de la misma a paramétricas. Resolvemos el sistema haciendo $z = \lambda$. Por reducción obtenemos que:

$$2y = 0 \Longrightarrow y = 0$$

Sustituyendo en la primera ecuación obtenemos que x=1. Por tanto, la ecuación paramétrica de la recta es:

$$r \equiv \left\{ \begin{array}{l} x = 1 \\ y = 0 \\ z = \lambda \end{array} \right.$$

de lo que deducimos que el vector director sería $\vec{v} = (0, 0, 1)$.

Ya que tenemos todos los datos vamos a calcular el ángulo:

$$sen\alpha = \frac{\left|\sqrt{3}\cdot 0 + 0\cdot 0 - 1\cdot 1\right|}{\sqrt{3+1}\cdot \sqrt{1}} = \frac{1}{2}$$

En consecuencia:

$$\alpha = arcsen\frac{1}{2} = \frac{\pi}{6} \ rad$$

3.2.13. Determine la relación que deben cumplir λ y μ para que la distancia del punto $P=(\lambda,1,\mu)$ al plano determinado por los puntos $A=(1,1,1),\,B=(1,0,0)$ y C=(0,2,1) sea igual a 1.

(Junio 10 - Fase específica)

- Solución:

Vamos a calcular la ecuación general del plano. Dicho plano puede venir determinado por A, \overrightarrow{AB} y \overrightarrow{AC} . Tenemos que A(1,1,1), $\overrightarrow{AB}=(0,-1,-1)$ y $\overrightarrow{AC}=(-1,1,0)$.

Por tanto la ecuación es:

$$\begin{vmatrix} x-1 & y-1 & z-1 \\ 0 & -1 & -1 \\ -1 & 1 & 0 \end{vmatrix} = y-1-(z-1)+x-1=x+y-z-1=0$$

En consecuencia tenemos que el plano es x+y-z-1=0. La distancia del punto P al plano es:

$$d(P,\Pi) = \frac{|\lambda + 1 - \mu - 1|}{\sqrt{1 + 1 + 1}} = \frac{|\lambda - \mu|}{\sqrt{3}}$$

Para que la distancia sea 1 tiene que cumplirse que:

$$\frac{|\lambda - \mu|}{\sqrt{3}} \Longrightarrow |\lambda - \mu| = \sqrt{3}$$

3.2.14. Fijados los puntos A=(1,0,0) y B=(0,1,0), obtenga la relación que deben cumplir los número reales λ y μ para que el punto $P=(\lambda,\mu,0)$ sea tal que el triángulo ABP tenga área igual a 1.

(Septiembre 10 - Fase general)

- Solución:

Vamos a construir los vectores \overrightarrow{AB} y \overrightarrow{AP} .

Tenemos que $\overrightarrow{AB} = (-1, 1, 0)$ y que $\overrightarrow{AP} = (\lambda - 1, \mu, 0)$.

El área del triángulo se calcula usando la fórmula

$$A = \frac{1}{2} \left| \overrightarrow{AB} \wedge \overrightarrow{AP} \right|$$

Calculemos primero el producto vectorial

$$\overrightarrow{AB} \wedge \overrightarrow{AP} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & 1 & 0 \\ \lambda - 1 & \mu & 0 \end{vmatrix} = -\mu \vec{k} - (\lambda - 1)\vec{k} = (-\lambda - \mu + 1)\vec{k}$$

Por tanto

$$\left|\overrightarrow{AB}\wedge\overrightarrow{AP}\right|=\left|-\lambda-\mu+1\right|$$

Y en consecuencia:

$$A = \frac{|-\lambda - \mu + 1|}{2} = 1 \Longrightarrow |-\lambda - \mu + 1| = 2 \Longrightarrow \begin{bmatrix} -\lambda - \mu + 1 = 2 \Longrightarrow \mu = -\lambda - 1 \\ \lambda + \mu - 1 = 2 \Longrightarrow \mu = -\lambda + 3 \end{bmatrix}$$

- **3.2.15.** Sea r la recta que pasa por los puntos A = (1,0,0) y B = (1,-1,0), y sea s la recta que pasa por los puntos C = (0,1,1) y D = (1,0,-1).
 - a) Calcule el plano Π que contiene a s y es paralelo a r.
 - b) Calcule la distancia entre las rectas r y s.

(Septiembre 11)

- Solución:

Vamos a calcular antes de nada las ecuaciones de r y s.

• r viene determinada por A y \overrightarrow{AB} . Es fácil ver que $\overrightarrow{AB} = (0, -1, 0)$. Por tanto:

$$r: \left\{ \begin{array}{ll} x = 1 \\ y = -\lambda \\ z = 0 \end{array} \right.$$

• s viene determinada por C y \overrightarrow{CD} . Es fácil ver que $\overrightarrow{CD}=(1,-1,-2)$. Por tanto:

$$s: \begin{cases} x = \mu \\ y = 1 - \mu \\ z = 1 - 2\mu \end{cases}$$

Encontradas las ecuaciones vamos a contestar a los apartados.

a) Para construir el plano vamos a usar el punto C y el vector \overrightarrow{CD} (pues $s \subset \Pi$) y el vector \overrightarrow{AB} (pues $r \parallel \Pi$). En paramétricas tenemos:

$$\Pi : \begin{cases} x = & + & \mu \\ y = & 1 & - & \lambda & - & \mu \\ z = & 1 & & - & 2\mu \end{cases}$$

La ecuación general será:

$$\begin{vmatrix} x & y-1 & z-1 \\ 0 & -1 & 0 \\ 1 & -1 & -2 \end{vmatrix} = 2x + (z-1) = 0 \Longrightarrow 2x + z = 1$$

b) Como sus vectores directores no son proporcionales las rectas r y s se cortan o se cruzan. Vamos a aplicar para calcular la distancia la fórmula de dos rectas que se cruzan, pues si se cortan la distancia dará 0.

$$d(r,s) = \frac{\left| \left[\overrightarrow{AC}, \overrightarrow{u}, \overrightarrow{v} \right] \right|}{\left| \overrightarrow{u} \wedge \overrightarrow{v} \right|}$$

Vamos calcular primero el producto mixto y el producto vectorial.

$$\left[\overrightarrow{AC}, \vec{u}, \vec{v}\right] = \begin{vmatrix} -1 & 1 & 1 \\ 0 & -1 & 0 \\ 1 & -1 & -2 \end{vmatrix} = -2 + 1 = -1$$

$$\vec{u} \wedge \vec{v} = \left| egin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ 0 & -1 & 0 \\ 1 & -1 & -2 \end{array} \right| = 2\vec{i} + \vec{k} \Longrightarrow \vec{u} \wedge \vec{v} = (2, 0, 1)$$

Luego:

$$d(r,s) = \frac{|-1|}{|(2,0,1)|} = \frac{1}{\sqrt{4+1}} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$$

3.2.16.

- a) Calcule las ecuaciones implicitas de la recta r que pasa por los puntos A=(1,0,0) y B=(-1,0,-1).
- b) De todos los planos que contienen a la recta r, obtenga uno cuya distancia al punto C = (0, -1, 0) sea igual a 1.

(Septiembre 11)

- Solución:

a) Vamos a usar el punto \overrightarrow{A} y el vector \overrightarrow{AB} . El vector buscado es: $\overrightarrow{AB} = (-2, 0, -1)$. Por comodidad vamos a usar $\overrightarrow{AB} = (2, 0, 1)$. La recta en forma continua será:

$$\frac{x-1}{2} = \frac{y}{0} = \frac{z}{1}$$

La ecuación implicita es:

$$\begin{bmatrix} y = 0 \\ x - 1 = 2z \end{bmatrix} \implies \begin{cases} y = 0 \\ x - 2z = 1 \end{bmatrix}$$

b) Un plano que contenga a r tiene que pasar por un punto de r y su vector normal ser ortogonal al vector director de r. El plano será $\Pi \equiv ax + by + cz = d$.

Como
$$A \in \Pi \Longrightarrow a = d \Longrightarrow \Pi \equiv ax + by + cz = a$$
.

Además tenemos que:

$$\overrightarrow{AB} \perp \overrightarrow{n} \Longrightarrow (2,0,1) \cdot (a,b,c) = 0 \Longrightarrow 2a+c=0 \Longrightarrow c=-2a$$

En consecuencia nuestro plano tiene una ecuación de la forma $\Pi \equiv ax + by - 2az = a$. Impongamos la condición de la distancia:

$$d(C,\Pi) = \frac{|-b-a|}{\sqrt{a^2+b^2+4a^2}} = 1 \Longrightarrow \frac{|-b-a|}{\sqrt{5a^2+b^2}} = 1 \Longrightarrow \sqrt{5a^2+b^2} = |-b-a|$$

Nos piden un plano que cumpla lo dicho. Basta con tomar a=0 y b=1, que cumplen las condiciones. El plano obtenido es

$$\Pi \equiv y = 0$$

3.2.17. Calcule la distancia del punto P = (3, -1, 2) a la recta

$$r: \left\{ \begin{array}{l} x-y+z=1\\ x+z=0 \end{array} \right. .$$

(Junio 12)

- Solución:

Vamos a pasar primero la ecuación de la recta a paramétricas, pues necesitamos para aplicar la fórmula un punto y el vector director de la misma.

$$r: \left\{ \begin{array}{l} x - y + z = 1 \\ x + z = 0 \end{array} \right.$$

Hacemos $z=\lambda.$ Sustituyendo en la segunda ecuación tenemos $x=-\lambda.$ Sustituyendo en la primera tendríamos:

$$-\lambda - y + \lambda = 1 \Longrightarrow y = -1$$

La ecuación paramétrica de la recta es:

$$\begin{array}{cccc} x & = & & - & \lambda \\ y & = & -1 & & \\ z & = & & \lambda \end{array} \right] \Longrightarrow \left\{ \begin{array}{ccc} A = (0, -1, 0) \\ \vec{u} = (-1, 0, 1) \end{array} \right.$$

Para calcular la distancia usamos la fórmula:

$$d(P,r) = \frac{\left|\overrightarrow{AP} \wedge \overrightarrow{u}\right|}{\left|\overrightarrow{u}\right|}$$

En nuestro caso $\overrightarrow{AP} = (3, 0, 2)$.

Por tanto:

$$\overrightarrow{AP} \wedge \overrightarrow{u} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 3 & 0 & 2 \\ -1 & 0 & 1 \end{vmatrix} = -2\overrightarrow{j} - 3\overrightarrow{j} = -5\overrightarrow{j} \Longrightarrow \overrightarrow{AP} \wedge \overrightarrow{u} = (0, -5, 0)$$

En consecuencia:

$$d(P,r) = \frac{\left| \overrightarrow{AP} \wedge \overrightarrow{u} \right|}{|\overrightarrow{u}|} = \frac{\sqrt{25}}{\sqrt{1+1}} = \frac{5}{\sqrt{2}} \ u = \frac{5\sqrt{2}}{2} \ u$$

3.2.18. Dados el plano Π de ecuación x+z=1 y los puntos A=(1,0,0) y B=(0,1,0), calcule los valores de c para los que el punto P=(0,0,c) cumple "área del triángulo ABP"="distancia de P a Π ".

(Septiembre 12)

- Solución:

El área del triángulo ABP (A_T) es:

$$A_T = \frac{1}{2} \left| \overrightarrow{AB} \wedge \overrightarrow{AP} \right|$$

Tenemos que $\overrightarrow{AB} = (-1, 1, 0)$ y $\overrightarrow{AP} = (-1, 0, c)$. Vamos a realizar el producto vectorial.

$$\overrightarrow{AB} \wedge \overrightarrow{AP} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & 1 & 0 \\ -1 & 0 & c \end{vmatrix} = c\vec{i} + \vec{k} + c\vec{j} \Longrightarrow \overrightarrow{AB} \wedge \overrightarrow{AP} = (c, c, 1)$$

Luego:

$$A_T = \frac{1}{2} \left| \overrightarrow{AB} \wedge \overrightarrow{AP} \right| = \frac{1}{2} \sqrt{c^2 + c^2 + 1} = \frac{1}{2} \sqrt{2c^2 + 1}$$

La distancia de P a Π es:

$$d(P,\Pi) = \frac{|0+c-1|}{\sqrt{2}} = \frac{|c-1|}{\sqrt{2}}$$

Por tanto, igualando el área y la distancia tenemos:

$$\begin{array}{rcl} A_T & = & d(P,\Pi) \\ \frac{1}{2}\sqrt{2c^2+1} & = & \frac{|c-1|}{\sqrt{2}} \\ \\ \frac{\sqrt{2c^2+1}\sqrt{2}}{2} & = & |c-1| \\ \\ \sqrt{\frac{4c^2+2}{4}} & = & |c-1| \\ \\ \sqrt{c^2+\frac{1}{2}} & = & |c-1| \end{array}$$

Elevando al cuadrado en ambos miembros de la igualdad tenemos:

$$c^{2} + \frac{1}{2} = c^{2} + 1 - 2c$$

$$2c = \frac{1}{2}$$

$$c = \frac{1}{4}$$

3.2.19. En \mathbb{R}^3 , calcule la distancia del punto P=(1,-1,2) a la recta r que pasa por los puntos A=(0,-1,1) y B=(1,0,1).

(Septiembre 13)

- Solución:

La recta va a venir determinada por A y \overrightarrow{AB} . Para aplicar la fórmula de la distancia de un punto a una recta vamos a calcular también el vector \overrightarrow{AP} .

Los vectores resultantes son $\overrightarrow{AB} = (1, 1, 0)$ y $\overrightarrow{AP} = (1, 0, 1)$.

Sabemos que la fórmula de la distancia es:

$$d(P,r) = \frac{\left| \overrightarrow{AB} \times \overrightarrow{AP} \right|}{\left| \overrightarrow{AB} \right|}$$

Vamos a calcular el producto vectorial:

$$\overrightarrow{AB} \times \overrightarrow{AP} = \left| egin{array}{ccc} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right| = \overrightarrow{i} - \overrightarrow{k} - \overrightarrow{j} \Longrightarrow \overrightarrow{AB} \times \overrightarrow{AP} = (1, -1, -1)$$

186

Vamos a calcular los módulos de dichos vectores:

$$\left|\overrightarrow{AB} \times \overrightarrow{AP}\right| = \sqrt{1+1+1} = \sqrt{3}$$

$$\left|\overrightarrow{AB}\right| = \sqrt{1+1} = \sqrt{2}$$

Por tanto, la distancia requerida es:

$$d(P,r) = \frac{\sqrt{3}}{\sqrt{2}} u$$

3.2.20. Fijados los puntos A = (1, 1, 0) y B = (1, 0, 1), calcule todos los puntos de la forma $X = (0, \lambda, \mu)$ para los que el triángulo ABX es equilátero.

(Septiembre 13)

- Solución:

Vamos a calcular los vectores \overrightarrow{AB} , \overrightarrow{AX} y \overrightarrow{BX} .

$$\overrightarrow{AB} = (0, -1, 1)$$
; $\overrightarrow{AX} = (-1, \lambda - 1, \mu)$; $\overrightarrow{BX} = (-1, \lambda, \mu - 1)$

Vamos a calcular los módulos de dichos vectores y luego los igualaremos para que sea equilátero, lo que dará lugar a un sistema de ecuaciones que resolveremos.

$$\begin{split} \left| \overrightarrow{AB} \right| &= \sqrt{1+1} = \sqrt{2} \\ \left| \overrightarrow{AX} \right| &= \sqrt{1+(\lambda-1)^2 + \mu^2} = \sqrt{1+\lambda^2 - 2\lambda + 1 + \mu^2} \\ \left| \overrightarrow{BX} \right| &= \sqrt{1+\lambda^2 + (\mu-1)^2} = \sqrt{1+\lambda^2 + \mu^2 - 2\mu + 1} \end{split}$$

De igualar al primero los otros dos obtenemos sendas ecuaciones que formarán nuestro sistema.

$$\begin{vmatrix} \overrightarrow{AB} \end{vmatrix} = \begin{vmatrix} \overrightarrow{AX} \end{vmatrix} \implies \sqrt{1 + \lambda^2 - 2\lambda + 1 + \mu^2} = \sqrt{2} \implies \lambda^2 - 2\lambda + \mu^2 = 0$$
$$\begin{vmatrix} \overrightarrow{AB} \end{vmatrix} = \begin{vmatrix} \overrightarrow{BX} \end{vmatrix} \implies \sqrt{1 + \lambda^2 + \mu^2 - 2\mu + 1} = \sqrt{2} \implies \lambda^2 + \mu^2 - 2\mu = 0$$

Restando las dos ecuaciones tenemos:

$$-2\lambda + 2\mu = 0 \Longrightarrow -2\lambda = -2\mu \Longrightarrow \lambda = \mu$$

Sustituyendo en cualquiera de ellas obtenemos:

$$\lambda^2 - 2\lambda + \lambda^2 = 0 \Longrightarrow 2\lambda^2 - 2\lambda = 0 \Longrightarrow 2\lambda(\lambda - 1) = 0 \Longrightarrow \begin{bmatrix} \lambda = 0 \\ \lambda = 1 \end{bmatrix}$$

Los puntos buscados son:

$$\lambda = \mu = 0 \Longrightarrow P_1 = (0, 0, 0,)$$

 $\lambda = \mu = 1 \Longrightarrow P_2 = (0, 1, 1)$

3.2.21.

a) Calcule el valor del parámetro k para que la recta $r: \left\{ \begin{array}{l} x+y+z=0 \\ x-y-z=1 \end{array} \right.$ sea paralela al plano Π de ecuación kx+y+kz=1.

b) Para el valor de k obtenido en el apartado anterior, calcule la distancia de la recta r al plano Π .

(Julio 14)

- Solución:

Para que la recta sea paralela al plano, el vector director de la misma tiene que ser ortogonal al vector normal del plano.

Como en el siguiente apartado vamos a necesitar un punto de la recta además del vector sería bueno resolver el sistema que defina la recta. De esa forma obtenemos punto y vector. Vamos pues a resolverlo.

Podemos transformar z en un parámetro $(z = \lambda)$.

El sistema quedaría de la siguiente forma:

$$x + y = -\lambda$$
$$x - y = 1 + \lambda$$

La resolución es trivial y daría la siguiente ecuación paramétrica de la recta.

$$x = \frac{1}{2}$$

$$y = -\frac{1}{2} - \lambda$$

$$z = \lambda$$

Luego un punto de la recta podría ser $P = \left(\frac{1}{2}, -\frac{1}{2}, 0\right)$ y el vector sería $\vec{u} = (0, -1, 1)$. Un vector normal al plano es $\vec{n} = (k, 1, k)$. Por tanto:

$$\vec{u} \parallel \vec{n} \Leftrightarrow \vec{u} \cdot \vec{n} = 0 \Leftrightarrow (0, -1, 1) \cdot (k, 1, k) = -1 + k = 0 \Longrightarrow k = 1$$

El plano resultante sería $\pi \equiv x + y + z = 1$.

Vamos a calcular la distancia que nos piden. Hay que tener en cuenta que $r \parallel \pi$, por tanto la distancia de la recta al plano será la distancia de cualquier punto de la recta a dicho plano.

Como tenemos el punto P y la ecuación del plano, la distancia sería.

$$d(r,\pi) = d(P,\pi) = \frac{\left|\frac{1}{2} - \frac{1}{2} + 0 - 1\right|}{\sqrt{1 + 1 + 1}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}u$$